• Journal of Atmospheric and Environmental Optics
  • Vol. 7, Issue 1, 13 (2012)
Wei GAO1、2、*, Wei-dong CHEN3, WEI-jun ZHANG1、2, and Xiao-ming GAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2012.01.003 Cite this Article
    GAO Wei, CHEN Wei-dong, ZHANG WEI-jun, GAO Xiao-ming. Characteristics of CH4 Spectroscopy at Low Temperature Near 1.65 μm[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(1): 13 Copy Citation Text show less
    References

    [1] Müller G. A contribution to the implementation of the WMO strategic plan: 2008-2011 (WMO TD NO. 1384) [R]. GAW report, No. 172. World Meteorological Organization, Geneva, Switzerland, 2008.

    [2] Rothman L S, Gordon I E, et al. The HITRAN 2008 molecular spectroscopic database [J]. J. Quant. Spectrosc. Radiat. Transfer, 2009, 110: 533.

    [3] Zhang Xiao-hui, Chen Jin-hai, Peng Qi, et al. analysis of the lineshape of laser frequency modulation [J]. Spectroscopy and Spectral Analysis, 2001, 21(3): 257(in Chinese).

    [4] GU Huiming, Alan Zhang. Multi-pass absorption FM spectrosoopy [J]. Acta Photonica Sinca, 2003, 32: 1013(in Chinese).

    [5] WU Sheng-hai, ZHUANG Hua, YANG Xiao-hua, et al. The mechod of wavelength calibration in high resolution absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2002, 22(4): 569(in Chinese).

    [6] Boras K, Deboer D, Lin Z, et al. The Stark effect in methane’s 3v1+v3 vibrational overtone band [J]. J. Chem. Phys., 1993, 99: 1429.

    [7] Campargue A, Chenevier M, Stoeckel F. Intracavity-laser-absorption spectroscopy of the visible overtone transition of methane in a supersonically cooled jet [J]. Chem. Phys. Lett., 1991, 183: 153.

    [8] Campargue A, Permogorov D, Jost R. Intracavity absorption spectroscopy of the third stretching overtone transition of jet cooled methane [J]. J. Chem. Phys, 1995, 102: 5910.

    [9] Hippler M, Quack M. Cw-cavity ring-down infrared absorption spectroscopy in pulsed supersonic jets: Nitrous oxide and methane [J]. Chem. Phys. Lett., 1999, 314: 273.

    [10] Hippler M, Quack M. High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2+2ν3 band of methane near 7510 cm-1 in slit jet expansions and at room temperature [J]. J. Chem. Phys., 2002, 116: 6045.

    [11] Amrein A, Quack M, Schmitt U. High-resolution interferometric Fourier transform infrared absorption spectroscopy in supersonic free jet expansions: carbon monoxide, nitric oxide, methane, ethyne, propyne, and trifluoromethane [J]. J. Phys. Chem. 1988, 92: 5455.

    [12] Albert S, Bauerecker S, Boudon V, et al. Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm-1[J]. Chemical Physics, 2009, 356: 131.

    [13] Kluczynski P, Gustafsson J, et al. Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals [J]. Spectrochimica Acta Part B, 2001, 56: 1277.

    [14] Rothman L S, Jacquemart D, et al. The HITRAN 2004 molecular spectroscopic database [J].J. Quant. Spectrosc. Radiat. Transfer, 2005, 96: 139.

    [15] Bragg S L, Kelley J D. Atmospheric water vapor absorption at 1.3 μm[J]. Appl. Opt., 1987, 26: 506.

    GAO Wei, CHEN Wei-dong, ZHANG WEI-jun, GAO Xiao-ming. Characteristics of CH4 Spectroscopy at Low Temperature Near 1.65 μm[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(1): 13
    Download Citation