• Photonics Research
  • Vol. 13, Issue 5, 1313 (2025)
Jia Du1, Weixiao Xu1,2,3, Runwei Zhou1,2, Xiao Chen1..., Ting Li1, Xiongping Bao1,2, Hong Wang1,4, Weibiao Chen1,2,3 and Libing Zhou1,2,*|Show fewer author(s)
Author Affiliations
  • 1Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 4Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.550226 Cite this Article Set citation alerts
    Jia Du, Weixiao Xu, Runwei Zhou, Xiao Chen, Ting Li, Xiongping Bao, Hong Wang, Weibiao Chen, Libing Zhou, "Advancing photonic device capabilities via femtosecond laser modification of LPCVD-SiN microring resonator characteristics," Photonics Res. 13, 1313 (2025) Copy Citation Text show less
    References

    [1] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [2] D. Kim, Y. Park, D. Kim. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photonics, 17, 1089-1096(2023).

    [3] J. Shi, M. Jin, T. Yang. 16-channel photonic–electric co-designed silicon transmitter with ultra-low power consumption. Photonics Res., 11, 143-149(2023).

    [4] G. Giamougiannis, A. Tsakyridis, M. Moralis-Pegios. Neuromorphic silicon photonics with 50 GHz tiled matrix multiplication for deep-learning applications. Adv. Photonics, 5, 016004(2023).

    [5] L. Torrijos-Morán, D. Pérez-Galacho, D. Pérez-López. Silicon programmable photonic circuits based on periodic bimodal waveguides. Laser Photonics Rev., 18, 2300505(2024).

    [6] J. Parra, J. Navarro-Arenas, P. Sanchis. Silicon thermo-optic phase shifters: a review of configurations and optimization strategies. Adv. Photonics Nexus, 3, 044001(2024).

    [7] S. Shekhar, W. Bogaerts, L. Chrostowski. Roadmapping the next generation of silicon photonics. Nat. Commun., 15, 751(2024).

    [8] J. Li, T. Gan, B. Bai. Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network. Adv. Photonics, 5, 016003(2023).

    [9] K. Buzaverov, A. Baburin, E. Sergeev. Silicon nitride integrated photonics from visible to mid-infrared spectra. Laser Photonics Rev., 18, 2400508(2024).

    [10] T. Bucio, C. Lacava, M. Clementi. Silicon nitride photonics for the near-infrared. IEEE J. Sel. Topics Quantum Electron., 26, 8200613(2019).

    [11] G. De Paoli, S. Jantzen, T. Bucio. Laser trimming of the operating wavelength of silicon nitride racetrack resonators. Photonics Res., 8, 677-683(2020).

    [12] C. Xiang, W. Jin, J. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res., 10, A82-A96(2022).

    [13] D. Blumenthal, R. Heideman, D. Geuzebroek. Silicon nitride in silicon photonics. Proc. IEEE, 106, 2209-2231(2018).

    [14] Z. Ye, H. Jia, Z. Huang. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res., 11, 558-568(2023).

    [15] V. Vitali, T. Bucio, H. Liu. Fully integrated and broadband Si-rich silicon nitride wavelength converter based on Bragg scattering intermodal four-wave mixing. Photonics Res., 12, A1-A10(2024).

    [16] K. Ye, D. Marpaung. Compact multi-mode silicon-nitride micro-ring resonator with low loss. Adv. Photonics, 5, 050503(2023).

    [17] T. Korchagina, V. A. Volodin, B. N. Chichkov. Formation and crystallization of silicon nanoclusters in SiNx: H films using femtosecond pulsed laser annealings. Semiconductors, 44, 1611-1616(2010).

    [18] D. Yi, Y. Wang, H. K. Tsang. Multi-functional photonic processors using coherent network of micro-ring resonators. APL Photonics, 6, 100801(2021).

    [19] V. Fallahi, Z. Kordrostami, M. Hosseini. Sensitivity and quality factor improvement of photonic crystal sensors by geometrical optimization of waveguides and micro-ring resonators combination. Sci. Rep., 14, 2001(2024).

    [20] L. Huang, C. Yang, L. Liang. Integrated light sources based on micro-ring resonators for chip-based LiDAR. Laser Photonics Rev., 19, 2400343(2024).

    [21] Y. Liu, Y. Chen, L. Wang. Tunable and reconfigurable microwave photonic bandpass filter based on cascaded silicon microring resonators. J. Lightwave Technol., 40, 4655-4662(2022).

    [22] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).

    [23] D. Po, Q. Wei, H. Liang. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt. Express, 18, 9852-9858(2010).

    [24] J. Sun, R. Kumar, M. Sakib. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).

    [25] H. Haeiwa, T. Naganawa, Y. Kokubun. Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core. IEEE Photonics Technol. Lett., 16, 135-137(2004).

    [26] V. Biryukova, G. J. Sharp, C. Klitis. Trimming of silicon-on-insulator ring-resonators via localized laser annealing. Opt. Express, 28, 11156-11164(2020).

    [27] C. Antonio, M. Francesco, S. Grillanda. Photo-induced trimming of chalcogenide-assisted silicon waveguides. Opt. Express, 20, 15807-15817(2012).

    [28] Y. Wu, H. Shang, X. Zheng. Post-processing trimming of silicon photonic devices using femtosecond laser. Nanomaterials, 13, 1031(2023).

    [29] H. Jayatilleka, H. Frish, R. Kumar. Post-fabrication trimming of silicon photonic ring resonators at wafer-scale. J. Lightwave Technol., 39, 5083-5088(2021).

    [30] M. Milosevic, X. Chen, W. Cao. Ion implantation in silicon for trimming the operating wavelength of ring resonators. IEEE J. Sel. Top. Quantum Electron., 24, 8200107(2018).

    [31] X. Chen, M. M. Milosevic, D. J. Thomson. Post-fabrication phase trimming of Mach–Zehnder interferometers by laser annealing of germanium implanted waveguides. Photonics Res., 5, 578-582(2017).

    [32] M. M. Milosevic, X. Chen, X. Yu. Ion implantation of germanium into silicon for critical coupling control of racetrack resonators. J. Lightwave Technol., 38, 1865-1873(2020).

    [33] L. Ge, H. Jiang, Y. Liu. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by ‘light annealing’. Opt. Mater. Express, 9, 1632-1639(2019).

    [34] J. Du, L. Zhou, W. Xu. Modifying single-crystal silicon and trimming silicon microring devices by femtosecond laser irradiation. Opt. Express, 32, 16199-16211(2024).

    [35] D. Bachman, Z. Chen, R. Fedosejevs. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation. Opt. Express, 21, 11048-11056(2013).

    [36] D. Bachman, Z. Chen, C. Wang. Post fabrication phase error correction of silicon photonic circuits by single femtosecond laser pulses. J. Lightwave Technol., 35, 588-595(2016).

    [37] V. Volodin, T. T. Korchagina, J. Koch. Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films. Physica E, 42, 1820-1823(2010).

    [38] R. Ricca, Y. Bellouard. Single-layer subwavelength femtosecond-laser-induced confined nanocrystallization in multistack dielectrics. Phys. Rev. Appl., 19, 044035(2023).

    [39] W. R. McKinnon, D.-X. Xu, C. Storey. Extracting coupling and loss coefficients from a ring resonator. Opt. Express, 17, 18971-18982(2009).

    Jia Du, Weixiao Xu, Runwei Zhou, Xiao Chen, Ting Li, Xiongping Bao, Hong Wang, Weibiao Chen, Libing Zhou, "Advancing photonic device capabilities via femtosecond laser modification of LPCVD-SiN microring resonator characteristics," Photonics Res. 13, 1313 (2025)
    Download Citation