• Advanced Photonics
  • Vol. 6, Issue 6, 064002 (2024)
Qinghua Gao1, Zhizhuo Zhang1, Cong Zhao1, Zexiang Wang1..., Yani Huo1, Dong Xiang1,*, Chuancheng Jia1,* and Xuefeng Guo1,2,*|Show fewer author(s)
Author Affiliations
  • 1Nankai University, College of Electronic Information and Optical Engineering, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, Institute of Modern Optics, Center of Single-Molecule Sciences, Tianjin, China
  • 2Peking University, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Beijing National Laboratory for Molecular Sciences, Beijing, China
  • show less
    DOI: 10.1117/1.AP.6.6.064002 Cite this Article Set citation alerts
    Qinghua Gao, Zhizhuo Zhang, Cong Zhao, Zexiang Wang, Yani Huo, Dong Xiang, Chuancheng Jia, Xuefeng Guo, "Single-molecule characterization from the perspective of optics, photonics, and optoelectronics: a review," Adv. Photon. 6, 064002 (2024) Copy Citation Text show less
    References

    [1] T. Cordes, S. A. Blum. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem., 5, 993-999(2013).

    [2] C. Huang et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun., 8, 15436(2017).

    [3] P. Chen et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev., 39, 4560-4570(2010).

    [4] J. Park et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 417, 722-725(2002).

    [5] C. Tang et al. Reversible switching between destructive and constructive quantum interference using atomically precise chemical gating of single-molecule junctions. J. Am. Chem. Soc., 143, 9385-9392(2021).

    [6] J. Hao et al. Multiple-channel and symmetry-breaking effects on molecular conductance via side substituents. Sci. China Mater., 67, 1994-1999(2024).

    [7] L. Bogani, W. Wernsdorfer. Molecular spintronics using single-molecule magnets. Adv. Mater., 7, 179-186(2008).

    [8] G. Rogez et al. The quest for nanoscale magnets: the example of [Mn12] single molecule magnets. Adv. Mater., 21, 4323-4333(2009).

    [9] Y. Luo et al. Anomalously bright single-molecule upconversion electroluminescence. Nat. Commun., 15, 1677(2024).

    [10] L. L. Nian, Y. Wang, J. T. Lu. On the Fano line shape of single molecule electroluminescence induced by a scanning tunneling microscope. Nano Lett., 18, 6826-6831(2018).

    [11] B. Yang et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics, 14, 693-699(2020).

    [12] W. Xu et al. Investigation of electronic excited states in single-molecule junctions. Nano Res., 15, 5726-5745(2022).

    [13] J. Dong et al. Direct imaging of single-molecule electrochemical reactions in solution. Nature, 596, 244-249(2021).

    [14] G. Chen et al. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett., 122, 177401(2019).

    [15] K. Kuhnke et al. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev., 117, 5174-5222(2017).

    [16] G. Binnig et al. Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 40, 178-180(1982).

    [17] S. W. Hla et al. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett., 85, 2777-2780(2000).

    [18] J. Y. Xu et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science, 371, 818-822(2021).

    [19] F. Pineider et al. Plasmon-enhanced magneto-optical detection of single-molecule magnets. Mater. Horiz., 6, 1148-1155(2019).

    [20] E. Coronado. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater., 5, 87-104(2020).

    [21] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).

    [22] M. Lelek et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers, 1, 39(2021).

    [23] W. Wu et al. Tetra-color superresolution microscopy based on excitation spectral demixing. Light Sci. Appl., 12, 9(2023).

    [24] C. Yang et al. A tunable single-molecule light-emitting diode with single-photon precision. Adv. Mater., 35, e2209750(2023).

    [25] C. Yang et al. Logic operation and real-time communication via tunable excited states in a single-molecule optoelectronic chip. Chem, 10, 1445-1457(2024).

    [26] S. Cai et al. Light-driven reversible intermolecular proton transfer at single-molecule junctions. Angew. Chem. Int. Ed., 58, 3829-3833(2019).

    [27] D. Dulić et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett., 91, 207402(2003).

    [28] C. Jia et al. Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed., 52, 8666-8670(2013).

    [29] Y. Kim et al. Charge transport characteristics of diarylethene photoswitching single-molecule junctions. Nano Lett., 12, 3736-3742(2012).

    [30] C. Zhang et al. Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys. Rev. Lett., 92, 158301(2004).

    [31] Q. Zou et al. Photoconductance from the bent-to-planar photocycle between ground and excited states in single-molecule junctions. J. Am. Chem. Soc., 144, 10042-10052(2022).

    [32] S. Battacharyya et al. Optical modulation of molecular conductance. Nano Lett., 11, 2709-2714(2011).

    [33] J. Zhou et al. Photoconductance from exciton binding in molecular junctions. J. Am. Chem. Soc., 140, 70-73(2018).

    [34] K. Yoshida, K. Shibata, K. Hirakawa. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett., 115, 138302(2015).

    [35] S. Du et al. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nat. Photonics, 12, 608-612(2018).

    [36] T. L. Cocker et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 539, 263-267(2016).

    [37] M. Wang et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat. Rev. Chem., 6, 681-704(2022).

    [38] A. Roslawska et al. Atomic-scale dynamics probed by photon correlations. ACS Nano, 14, 6366-6375(2020).

    [39] K. Vasilev et al. Internal Stark effect of single-molecule fluorescence. Nat. Commun., 13, 677(2022).

    [40] K. R. Rusimova et al. Regulating the femtosecond excited-state lifetime of a single molecule. Science, 361, 1012-1016(2018).

    [41] Z. L. Ruan et al. Real-space imaging of a phenyl group migration reaction on metal surfaces. Nat. Commun., 14, 970(2023).

    [42] H. Guo, A. J. Martínez-Galera, J. M. Gómez-Rodríguez. C60 self-orientation on hexagonal boron nitride induced by intermolecular coupling. Nanotechnology, 32, 025711(2020). https://doi.org/10.1088/1361-6528/abbbb2

    [43] Z. W. Yi et al. Revealing the orientation selectivity of tetrapyridyl-substituted porphyrins constrained in molecular ‘Klotski Puzzles’. J. Am. Chem. Soc., 145, 22366-22373(2023).

    [44] P. Merino et al. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy. Nat. Commun., 6, 8461(2015). https://doi.org/10.1038/ncomms9461

    [45] C. Chen et al. Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett., 105, 217402(2010).

    [46] B. Doppagne et al. Electrofluorochromism at the single-molecule level. Science, 361, 251-255(2018).

    [47] Z. C. Dong et al. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett., 92, 086801(2004).

    [48] X. Qiu, G. Nazin, W. Ho. Vibrationally resolved fluorescence excited with submolecular precision. Science, 299, 542-546(2003).

    [49] E. Cavar et al. Fluorescence and phosphorescence from individual molecules excited by local electron tunneling. Phys. Rev. Lett., 95, 196102(2005).

    [50] A. Kabakchiev et al. Electroluminescence from individual pentacene nanocrystals. ChemPhysChem, 11, 3412-3416(2010).

    [51] J. Lee et al. Vibronic motion with joint angstrom–femtosecond resolution observed through Fano progressions recorded within one molecule. ACS Nano, 8, 54-63(2014).

    [52] A. Roslawska et al. Submolecular-scale control of phototautomerization. Nat. Nanotechnol., 19, 738-743(2024).

    [53] J. Doležal et al. Single-molecule time-resolved spectroscopy in a tunable STM nanocavity. Nano Lett., 24, 1629-1634(2024).

    [54] K. F. Domke, D. Zhang, B. Pettinger. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc., 128, 14721-14727(2006).

    [55] X. Wang et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev., 46, 4020-4041(2017).

    [56] J. Lee et al. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature, 568, 78-82(2019).

    [57] A. Ahmed, R. Gordon. Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett., 12, 2625-2630(2012).

    [58] B. Pettinger et al. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry, 68, 942-949(2000).

    [59] X. Wang et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys., 2, 253-271(2020).

    [60] R. Gutzler et al. Light–matter interaction at atomic scales. Nat. Rev. Phys., 3, 441-453(2021).

    [61] B. Yang et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed., 62, e202218799(2023).

    [62] A. B. Zrimsek et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev., 117, 7583-7613(2017).

    [63] W. H. Zhang et al. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C, 111, 1733-1738(2007).

    [64] J. Langer et al. Present and future of surface-enhanced Raman scattering. ACS Nano, 14, 28-117(2020).

    [65] H. K. Choi et al. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: promises and current challenges. Acc. Chem. Res., 52, 3008-3017(2019).

    [66] Z. Zhang et al. Single molecule level plasmonic catalysis: a dilution study of p-nitrothiophenol on gold dimers. Chem. Commun., 51, 3069-3072(2015).

    [67] C. Y. Li et al. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Sci. Adv., 6, eaba6012(2020).

    [68] C. Guo et al. Molecular orbital gating surface-enhanced Raman scattering. ACS Nano, 12, 11229-11235(2018).

    [69] R. Zhang et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [70] E. M. van Schrojenstein Lantman et al. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol., 7, 583-586(2012).

    [71] Y. Zhang et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Natl. Sci. Rev., 6, 1169-1175(2019).

    [72] Y. Zhang et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature, 531, 623-627(2016).

    [73] L. Zhang et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun., 8, 580(2017).

    [74] K. Kimura et al. Selective triplet exciton formation in a single molecule. Nature, 570, 210-213(2019).

    [75] S. Jiang et al. Many-body description of STM-induced fluorescence of charged molecules. Phys. Rev. Lett., 130, 126202(2023).

    [76] C. Yang et al. Graphene-molecule-graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat. Protoc., 18, 1958-1978(2023).

    [77] Y. Hu et al. Single dynamic covalent bond tailored responsive molecular junctions. Angew. Chem. Int. Ed., 60, 20872-20878(2021).

    [78] H. L. Chen, J. Fraser Stoddart. From molecular to supramolecular electronics. Nat. Rev. Mater., 6, 804-828(2021).

    [79] N. Xin, X. F. Guo. Catalyst: the renaissance of molecular electronics. Chem, 3, 373-376(2017).

    [80] D. Xiang et al. Molecular-scale electronics: from concept to function. Chem. Rev., 116, 4318-4440(2016).

    [81] C. Jia et al. Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res., 48, 2565-2575(2015).

    [82] L. Sun et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev., 43, 7378-7411(2014).

    [83] E. S. Tam et al. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano, 5, 5115-5123(2011).

    [84] C. C. Jia et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science, 352, 1443-1445(2016).

    [85] A. C. Whalley et al. Reversible switching in molecular electronic devices. J. Am. Chem. Soc., 129, 12590-12591(2007).

    [86] T. C. Pijper et al. Reversible light induced conductance switching of asymmetric diarylethenes on gold: surface and electronic studies. Nanoscale, 5, 9277-9282(2013).

    [87] Y. Huang et al. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano, 12, 4062-4073(2018). https://doi.org/10.1021/acsnano.8b02380

    [88] L. Meng et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun., 13, 1410(2022).

    [89] N. Xin et al. Tunable symmetry-breaking-induced dual functions in stable and photoswitched single-molecule junctions. J. Am. Chem. Soc., 143, 20811-20817(2021).

    [90] Y. Cao et al. Toward functional molecular devices based on graphene–molecule junctions. Angew. Chem. Int. Ed., 52, 3906-3910(2013).

    [91] L. Meng et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun., 10, 1450(2019).

    [92] M. Tan et al. Conductance evolution of photoisomeric single-molecule junctions under ultraviolet irradiation and mechanical stretching. J. Am. Chem. Soc., 146, 6856-6865(2024).

    [93] P. Li et al. Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electron. Adv., 5, 210094(2022).

    [94] M. Galperin, A. Nitzan. Optical properties of current carrying molecular wires. J. Chem. Phys., 124, 234709(2006).

    [95] M. Galperin, A. Nitzan. Molecular optoelectronics: the interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys., 14, 9421-9438(2012).

    [96] H. Fu et al. Recent progress in single-molecule transistors: their designs, mechanisms and applications. J. Mater. Chem. C, 10, 2375-2389(2022).

    [97] Z. Zhao et al. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz., 6, 386-392(2021).

    [98] E. D. Fung et al. Too hot for photon-assisted transport: hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett., 17, 1255-1261(2017).

    [99] H. Liu et al. Single-molecule photoelectron tunnelling spectroscopy. Nat. Mater., 22, 1007-1012(2023).

    [100] J. K. Viljas, F. Pauly, J. C. Cuevas. Photoconductance of organic single-molecule contacts. Phys. Rev. B, 76, 033403(2007).

    [101] J. K. Viljas, J. C. Cuevas. Role of electronic structure in photoassisted transport through atomic-sized contacts. Phys. Rev. B, 75, 075406(2007).

    [102] Y. Q. An et al. Role of photo-assisted tunneling in time-dependent second-harmonic generation from Si surfaces with ultrathin oxides. Appl. Phys. Lett., 102, 051602(2013).

    [103] H. Reddy et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science, 369, 423-426(2020).

    [104] D. Brinks et al. Ultrafast dynamics of single molecules. Chem. Soc. Rev., 43, 2476-2491(2014).

    [105] C. I. Blaga et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature, 483, 194-197(2012).

    [106] Y. Wang et al. Laser-induced electron transfer in the dissociative multiple ionization of argon dimers. Phys. Rev. Lett., 125, 063202(2020).

    [107] J. Qiang et al. Femtosecond collisional dissipation of vibrating D2+ in helium nanodroplets. Phys. Rev. Lett., 132, 103201(2024). https://doi.org/10.1103/PhysRevLett.132.103201

    [108] L. Zhou et al. Ultrafast formation dynamics of D3+ from the light-driven bimolecular reaction of the D2D2 dimer. Nat. Chem., 15, 1229-1235(2023). https://doi.org/10.1038/s41557-023-01230-0

    [109] Z.-H. Loh et al. Observation of the fastest chemical processes in the radiolysis of water. Science, 367, 179-182(2020).

    [110] W. J. Ma et al. Laser acceleration of highly energetic carbon Ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett., 122, 014803(2019).

    [111] P. Wang et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X, 11, 021049(2021).

    [112] H. Petek. Single-molecule femtochemistry: molecular imaging at the space-time limit. ACS Nano, 8, 5-13(2014).

    [113] R. Hildner et al. Femtosecond coherence and quantum control of single molecules at room temperature. Nat. Phys., 7, 172-177(2011).

    [114] J. Lee et al. High spatial and temporal resolution using upconversion nanoparticles and femtosecond pulsed laser in single particle tracking. Curr. Appl. Phys., 44, 40-45(2022).

    [115] C. Fang, L. Tang. Mapping structural dynamics of proteins with femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem., 71, 239-265(2020).

    [116] H. J. Wörner et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science, 334, 208-212(2011). https://doi.org/10.1126/science.1208664

    [117] X. Lin et al. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol., 18, 124-130(2023).

    [118] M. G. Harrison et al. Two-photon fluorescence and femtosecond two-photon absorption studies of MeLPPP, a ladder-type poly(phenylene) with low intra-chain disorder. Chem. Phys. Lett., 313, 755-762(1999).

    [119] W. Zhang et al. Integrating aggregation induced emission and twisted intramolecular charge transfer via molecular engineering. Adv. Funct. Mater., 34, 2311404(2023).

    [120] C. A. DelPo et al. Polariton transitions in femtosecond transient absorption studies of ultrastrong light-molecule coupling. J. Phys. Chem. Lett., 11, 2667-2674(2020).

    [121] Y. H. Wang et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature, 600, 81-85(2021).

    [122] K.-i. Ataka, T. Yotsuyanagi, M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem., 100, 10664-10672(1996).

    [123] M. Van Exter, C. Fattinger, D. Grischkowsky. Terahertz time-domain spectroscopy of water vapor. Opt. Lett., 14, 1128-1130(1989).

    [124] P. U. Jepsen, S. J. Clark. Precise ab-initio prediction of terahertz vibrational modes in crystalline systems. Chem. Phys. Lett., 442, 275-280(2007).

    [125] D. Peller et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature, 585, 58-62(2020).

    [126] L. Wang, Y. Xia, W. Ho. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science, 376, 401-405(2022). https://doi.org/10.1126/science.abn9220

    [127] M. Garg, K. Kern. Attosecond coherent manipulation of electrons in tunneling microscopy. Science, 367, 411-415(2020).

    [128] F. Krausz, M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81, 163-234(2009).

    [129] M. Klaiber, J. S. Briggs. Crossover from tunneling to multiphoton ionization of atoms. Phys. Rev. A, 94, 053405(2016).

    [130] L. D. Carr et al. Cold and ultracold molecules: science, technology and applications. New J. Phys., 11, 055049(2009).

    [131] H. Yang et al. Observation of magnetically tunable Feshbach resonances in ultracold Na23K40+K40 collisions. Science, 363, 261-264(2019). https://doi.org/10.1126/science.aau5322

    [132] X.-Y. Wang et al. Magnetic Feshbach resonances in collisions of Na23K40 with K40. New J. Phys., 23, 115010(2021). https://doi.org/10.1088/1367-2630/ac3318

    [133] H. Yang et al. Creation of an ultracold gas of triatomic molecules from an atom–diatomic molecule mixture. Science, 378, 1009-1013(2022).

    [134] H. Son et al. Control of reactive collisions by quantum interference. Science, 375, 1006-1010(2022).

    [135] P. Agostini, L. F. DiMauro. The physics of attosecond light pulses. Rep. Prog. Phys., 67, 813-855(2004).

    [136] P. M. Paul et al. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689-1692(2001).

    [137] S. Haessler et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys., 6, 200-206(2010).

    [138] A. H. Zewail. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A, 104, 5660-5694(2000).

    [139] B. Guo et al. Ultrafast dynamics observation during femtosecond laser-material interaction. Int. J. Extrem. Manuf., 1, 032004(2019).

    [140] S. Li et al. Attosecond-pump attosecond-probe X-ray spectroscopy of liquid water. Science, 383, 1118-1122(2024).

    [141] J. Liang et al. Attosecond-resolved non-dipole photoionization dynamics. Nat. Photonics, 18, 311-317(2024).

    [142] H. Li et al. Light-induced ultrafast molecular dynamics: from photochemistry to optochemistry. J. Phys. Chem. Lett., 13, 5881-5893(2022).

    [143] M.-H. Xu et al. Tracing attosecond electron motion inside a molecule by interferences from photoelectron emission. J. Phys. B: At. Mol. Opt. Phys., 44, 021001(2011).

    [144] P. Li et al. Single-molecule nano-optoelectronics: insights from physics. Rep. Prog. Phys., 85, 086401(2022).

    [145] H. Timmers et al. Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy. Nat. Commun., 10, 3133(2019).

    [146] A. B. Pun et al. Ultra-fast intramolecular singlet fission to persistent multiexcitons by molecular design. Nat. Chem., 11, 821-828(2019).

    [147] S. Beaulieu et al. Photoexcitation circular dichroism in chiral molecules. Nat. Phys., 14, 484-489(2018).

    [148] H. Song, M. A. Reed, T. Lee. Single molecule electronic devices. Adv. Mater., 23, 1583-1608(2011).

    [149] S. V. Aradhya, L. Venkataraman. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol., 8, 399-410(2013).

    [150] A. P. De Silva, S. Uchiyama. Molecular logic and computing. Nat. Nanotechnol., 2, 399-410(2007).

    [151] C. J. Lambert. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev., 44, 875-888(2015).

    [152] M. Atzori, R. Sessoli. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc., 141, 11339-11352(2019).

    [153] C. Godfrin et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett., 119, 187702(2017).

    [154] E. Moreno-Pineda et al. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev., 47, 501-513(2018).

    [155] A. Gaita-Ariño et al. Molecular spins for quantum computation. Nat. Chem., 11, 301-309(2019).

    [156] S. Thiele et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science, 344, 1135-1138(2014).

    Qinghua Gao, Zhizhuo Zhang, Cong Zhao, Zexiang Wang, Yani Huo, Dong Xiang, Chuancheng Jia, Xuefeng Guo, "Single-molecule characterization from the perspective of optics, photonics, and optoelectronics: a review," Adv. Photon. 6, 064002 (2024)
    Download Citation