[1] Lashof D A and Ahuja D R 1990 Relative contributions of greenhouse gas emissions to global warming Nature 344 529–31
[2] Centi G and Perathoner S 2009 Opportunities and prospects in the chemical recycling of carbon dioxide to fuels Catal.Today 148 191–205
[3] Olah G A, Goeppert A and Prakash G K S 2009 Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons J. Org.Chem. 74 487–98
[4] Sakakura T, Choi J C and Yasuda H 2007 Transformation of carbon dioxide Chem. Rev. 107 2365–87
[5] Gao W L et al 2020 Industrial carbon dioxide capture and utilization: state of the art and future challenges Chem.Soc. Rev. 49 8584–686
[6] Arneth A et al 2017 Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed Nat. Geosci. 10 79–84
[7] Yaacob N F F, Mat Yazid M R, Abdul Maulud K N and Ahmad Basri N E 2020 A review of the measurement method, analysis and implementation policy of carbon dioxide emission from transportation Sustainability12 5873
[8] Mukherjee A, Dhiman V K, Srivastava P and Kumar A 2021 Intellectual tool to compute embodied energy and carbon dioxide emission for building construction materials J.Phys.: Conf. Ser. 1950 012025
[9] Cox P M, Betts R A, Jones C D, Spall S A and Totterdell I J 2000 Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model Nature 408 184–7
[10] Jiang K, Ashworth P, Zhang S Y, Liang X, Sun Y and Angus D 2020 China’s carbon capture, utilization and storage (CCUS) policy: a critical review Renew. Sustain. Energy Rev. 119 109601
[11] Ma Q M and Xu J H 2023 Green microfluidics in microchemical engineering for carbon neutrality Chin. J.Chem. Eng. 53 332–45
[12] Li L R, Zhang C B, Chen Y P and Liu X D 2022 The use of nanoparticles for high-efficiency CO2 capture by methanol J. CO2 Util. 66 102299
[13] Zhao Y, Moshtaghibana S, Zhu T L, Fayemiwo K A, Price A and Vladisavljevi′c G T 2022 Microfluidic fabrication of novel polymeric core-shell microcapsules for storage of CO2 solvents and organic chelating agents J. Polym. Sci.60 1727–40
[14] Yu W, Gao M, Rim G, Feric T G, Rivers M L, Alahmed A,Jamal A and Park A H A 2021 Novel in-capsule synthesis of metal–organic framework for innovative carbon dioxide capture system Green Energy Environ. 8 767–74
[15] Lee Y Y, Edgehouse K, Klemm A, Mao H C, Pentzer E and Gurkan B 2020 Capsules of reactive ionic liquids for selective capture of carbon dioxide at low concentrations ACS Appl. Mater. Interfaces 12 19184–93
[16] Tetradis-Meris G, Rossetti D, De Torres C P, Cao R, Lian G P and Janes R 2009 Novel parallel integration of microfluidic device network for emulsion formation Ind. Eng. Chem. Res. 48 8881–9
[17] Kobayashi I, Wada Y, Uemura K and Nakajima M 2010 Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip Microfluid. Nanofluidics 8 255–62
[18] Nisisako T and Torii T 2008 Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles Lab Chip 8 287–93
[19] Abate A R and Weitz D A 2011 Faster multiple emulsification with drop splitting Lab Chip 11 1911–5
[20] Li Z D, Li L Q, Liao M X, He L Q and Wu P 2019 Multiple splitting of droplets using multi-furcating microfluidic channels Biomicrofluidics 13 024112
[21] Hao G Q, Yu C, Chen Y Y, Liu X D and Chen Y P 2022 Controlled microfluidic encapsulation of phase change material for thermo-regulation Int. J. Heat Mass Transfer 190 122738
[22] Liu H and Crooks R M 2011 Three-dimensional paper microfluidic devices assembled using the principles of origami J. Am. Chem. Soc. 133 17564–6
[23] Zhang J L, Liu S X, Yang P Y and Sui G 2011 Rapid detection of algal toxins by microfluidic immunoassay Lab Chip 11 3516–22
[24] Li J, Chen H S and Stone H A 2011 Breakup of double emulsion droplets in a tapered nozzle Langmuir27 4324–7
[25] Vericella J J et al 2015 Encapsulated liquid sorbents for carbon dioxide capture Nat. Commun. 6 6124
[26] Chen C H, Sarkar A, Song Y A, Miller M A, Kim S J,Griffith L G, Lauffenburger D A and Han J 2011 Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator J. Am.Chem. Soc. 133 10368–71
[27] Zhang L, Wang W, Ju X J, Xie R, Liu Z and Chu L Y 2015 Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching RSC Adv. 5 5638–46
[28] Kang X J, Luo C X, Wei Q, Xiong C Y, Chen Q, Chen Y and Ouyang Q 2013 Mass production of highly monodisperse polymeric nanoparticles by parallel flow focusing system Microfluid. Nanofluidics 15 337–45
[29] Kricka L J, Fortina P, Panaro N J, Wilding P, Alonso-Amigo G and Becker H 2002 Fabrication of plastic microchips by hot embossing Lab Chip 2 1–4
[30] Yu Y R, Shang L R, Guo J H, Wang J and Zhao Y J 2018 Design of capillary microfluidics for spinning cell-laden microfibers Nat. Protocols 13 2557–79
[31] Zhang J, Xu W H, Xu F Y, Lu W W, Hu L Y, Zhou J L,Zhang C and Jiang Z 2021 Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing J. Food Eng. 290 110212
[32] Ghaznavi A et al 2022 A monolithic 3D printed axisymmetric co-flow single and compound emulsion generator Micromachines 13 188
[33] Stolaroff J K, Ye C W, Oakdale J S, Baker S E, Smith W L,Nguyen D T, Spadaccini C M and Aines R D 2016 Microencapsulation of advanced solvents for carbon capture Faraday Discuss. 192 271–81
[34] Wang C M, Luo X Y, Luo H M, Jiang D E, Li H R and Dai S 2011 Tuning the basicity of ionic liquids for equimolar CO2 capture Angew. Chem., Int. Ed. 50 4918–22
[35] Cadena C, Anthony J L, Shah J K, Morrow T I,Brennecke J F and Maginn E J 2004 Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem.Soc. 126 5300–8
[36] Gurkan B E, de La Fuente J C, Mindrup E M, Ficke L E,Goodrich B F, Price E A, Schneider W F and Brennecke J F 2010 Equimolar CO2 absorption by anion-functionalized ionic liquids J. Am. Chem. Soc.132 2116–7
[37] Zhang X P, Zhang X C, Dong H F, Zhao Z J, Zhang S J and Huang Y 2012 Carbon capture with ionic liquids: overview and progress Energy Environ. Sci. 5 6668–81
[38] Shi X Y, Xiao H, Azarabadi H, Song J Z, Wu X L, Chen X and Lackner K S 2020 Sorbents for the direct capture of CO2 from ambient air Angew. Chem., Int. Ed.59 6984–7006
[39] Angell C A, Ansari Y and Zhao Z F 2012 Ionic liquids: past, present and future Faraday Discuss. 154 9–27
[40] Liu Y, Sun J H, Huang H H, Bai L L, Zhao X M, Qu B H,Xiong L Q, Bai F Q, Tang J W and Jing L Q 2023 Improving CO2 photoconversion with ionic liquid and Co single atoms Nat. Commun. 14 1457
[41] Vishwakarma N K, Singh A K, Hwang Y H, Ko D H,Kim J O, Babu A G and Kim D P 2017 Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow Nat. Commun. 8 14676
[42] Plechkova N V and Seddon K R 2008 Applications of ionic liquids in the chemical industry Chem. Soc. Rev.37 123–50
[43] Nandi S, De Luna P, Daff T D, Rother J, Liu M, Buchanan W, Hawari A I, Woo T K and Vaidhyanathan R 2015 A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification Sci.Adv. 1 e1500421
[44] Kumar A, Madden D G, Lusi M, Chen K J, Daniels E A,Curtin T, Perry J J and Zaworotko M J 2015 Direct air capture of CO2 by physisorbent materials Angew. Chem.,Int. Ed. 54 14372–7
[45] Liang L F, Liu C P, Jiang F L, Chen Q H, Zhang L J, Xue H,Jiang H L, Qian J J, Yuan D Q and Hong M C 2017 Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework Nat. Commun. 8 1233
[46] Sculley J P and Zhou H C 2012 Enhancing amine-supported materials for ambient air capture Angew. Chem., Int. Ed.51 12660–1
[47] Y M V et al 2020 Cooperative carbon dioxide adsorption in alcoholamine- and alkoxyalkylamine-functionalized metal-organic frameworks Angew. Chem., Int. Ed.59 19468–77
[48] Simmons J M, Wu H, Zhou W and Yildirim T 2011 Carbon capture in metal–organic frameworks—a comparative study Energy Environ. Sci. 4 2177
[49] Aniruddha R, Sreedhar I and Reddy B M 2020 MOFs in carbon capture-past, present and future J. CO2 Util.42 101297
[50] Saha D, Bao Z B, Jia F and Deng S G 2010 Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A Environ. Sci. Technol. 44 1820–6
[51] Bao Z B, Yu L, Ren Q L, Lu X Y and Deng S G 2011 Adsorption of CO2 and CH4 on a magnesium-based metal organic framework J. Colloid Interface Sci. 353 549–56
[52] Trickett C A, Helal A, Al-Maythalony B A, Yamani Z H,Cordova K E and Yaghi O M 2017 The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion Nat. Rev. Mater. 2 17045
[53] Cavenati S, Grande C A and Rodrigues A E 2004 Adsorption equilibrium of methane, carbon dioxide, and nitrogen on Zeolite 13X at high pressures J. Chem. Eng. Data 49 1095–101
[54] Wang M, Lawal A, Stephenson P, Sidders J and Ramshaw C 2011 Post-combustion CO2 capture with chemical absorption: a state-of-the-art review Chem. Eng. Res. Des.89 1609–24
[55] Rubin E S, Mantripragada H, Marks A, Versteeg P and Kitchin J 2012 The outlook for improved carbon capture technology Prog. Energy Combust. Sci. 38 630–71
[56] Liao P Z, Wu X, Wang M H, Li Z M and Qian F 2023 Robust control and flexible operation for commercial-scale coal-fired power plant with solvent-based post-combustion carbon capture Int. J. Greenhouse Gas Control 123 103831
[57] Rubin E S 2008 CO2 capture and transport Elements 4 311–7
[58] van der Spek M, Arendsen R, Ramirez A and Faaij A 2016 Model development and process simulation of postcombustion carbon capture technology with aqueous AMP/PZ solvent Int. J. Greenhouse Gas Control47 176–99
[59] Vaidya P D and Kenig E Y 2007 CO2-alkanolamine reaction kinetics: a review of recent studies Chem. Eng. Technol.30 1467–74
[60] Kittel J, Idem R, Gelowitz D, Tontiwachwuthikul P,Parrain G and Bonneau A 2009 Corrosion in MEA units for CO2 capture: pilot plant studies Energy Proc. 1 791–7
[61] Didas S A, Choi S, Chaikittisilp W and Jones C W 2015 Amine-oxide hybrid materials for CO2 capture from ambient air Acc. Chem. Res. 48 2680–7
[62] Gebald C, Wurzbacher J A, Tingaut P, Zimmermann T and Steinfeld A 2011 Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air Environ. Sci. Technol.45 9101–8
[63] Ofner A, Mattich I, Hagander M, Dutto A, Seybold H,Rühs P A and Studart A R 2019 Controlled massive encapsulation via tandem step emulsification in glass Adv.Funct. Mater. 29 1806821
[64] Zhao Y J, Shum H C, Chen H S, Adams L L A, Gu Z Z and Weitz D A 2011 Microfluidic generation of multifunctional quantum dot barcode particles J. Am.Chem. Soc. 133 8790–3
[65] Kim S H, Shim J W and Yang S M 2011 Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays Angew.Chem., Int. Ed. 50 1171–4
[66] Anbari A, Chien H T, Datta S S, Deng W, Weitz D A and Fan J 2018 Microfluidic model porous media: fabrication and applications Small 14 1703575
[67] Scott S M and Ali Z 2021 Fabrication methods for microfluidic devices: an overview Micromachines 12 319
[68] Deshmukh S S and Goswami A 2020 Hot embossing of polymers—a review Mater. Today 26 405–14
[69] Datta S, Deshmukh S S, Kar T and Goswami A 2023 A review on modelling and numerical simulation of micro hot embossing process: fabrication, mold filling behavior,and demolding analysis Eng. Res. Express 5 012006
[70] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N,Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extrem. Manuf. 2 022004
[71] Xia Y N and Whitesides G M 1998 Soft lithography Annu.Rev. Mater. Sci. 28 153–84
[72] Makamba H, Kim J H, Lim K, Park N and Hahn J H 2003 Surface modification of poly(dimethylsiloxane) microchannels Electrophoresis 24 3607–19
[73] Jeyhani M, Thevakumaran R, Abbasi N, Hwang D K and Tsai S S H 2020 Microfluidic generation of all-aqueous double and triple emulsions Small 16 1906565
[74] Qin D, Xia Y N and Whitesides G M 1996 Rapid prototyping of complex structures with feature sizes larger than 20 μm Adv. Mater. 8 917–9
[75] Mcdonald J C and Whitesides G M 2002 Poly(dimethylsiloxane) as a material for fabricating microfluidic devices Acc. Chem. Res. 35 491–9
[76] Duffy D C, McDonald J C, Schueller O J A and Whitesides G M 1998 Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) Anal. Chem.70 4974–84
[77] Shu C S, Su Q T, Li M H, Wang Z B, Yin S H and Huang S 2022 Fabrication of extreme wettability surface for controllable droplet manipulation over a wide temperature range Int. J. Extrem. Manuf. 4 045103
[78] Ali U, Karim K J B A and Buang N A 2015 A review of the properties and applications of poly (methyl methacrylate)(PMMA) Polym. Rev. 55 678–705
[79] Vladisavljevi′c G T, Kobayashi I and Nakajima M 2012 Production of uniform droplets using membrane,microchannel and microfluidic emulsification devices Microfluid. Nanofluidics 13 151–78
[80] Peng L F, Deng Y J, Yi P Y and Lai X M 2014 Micro hot embossing of thermoplastic polymers: a review J.Micromech. Microeng. 24 013001
[81] Chu L Y, Utada A S, Shah R K, Kim J W and Weitz D A 2007 Controllable monodisperse multiple emulsions Angew. Chem., Int. Ed. 46 8970–4
[82] Shah R K et al 2008 Designer emulsions using microfluidics Mater. Today 11 18–27
[83] Chen Y P, Liu X D, Zhang C B and Zhao Y J 2015 Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear Lab Chip 15 1255–61
[84] Gross B, Lockwood S Y and Spence D M 2017 Recent advances in analytical chemistry by 3D printing Anal.Chem. 89 57–70
[85] Meng Z J, Mu X D, He J K, Zhang J L, Ling R and Li D C 2023 Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration Int. J. Extrem. Manuf.5 025001
[86] Q Z M et al 2023 3D printed fiber-optic nanomechanical bioprobe Int. J. Extrem. Manuf. 5 015005
[87] Ma X L 2013 Research on application of SLA technology in the 3D printing technology Appl. Mech. Mater.401–403 938–41
[88] Yun J S, Park T W, Jeong Y H and Cho J H 2016 Development of ceramic-reinforced photopolymers for SLA 3D printing technology Appl. Phys. A 122 629
[89] Wu H, Fahy W P, Kim S, Kim H, Zhao N, Pilato L, Kafi A,Bateman S and Koo J H 2020 Recent developments in polymers/polymer nanocomposites for additive manufacturing Prog. Mater. Sci. 111 100638
[90] Revilla-León M and ?zcan M 2019 Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry J.Prosthodont. 28 146–58
[91] Sui S et al 2023 Additive manufacturing of magnesium and its alloys: process-formability-microstructure-performance relationship and underlying mechanism Int. J. Extrem.Manuf. 5 042009
[92] Mu Y B, Chu Y Q, Pan L, Wu B K, Zou L F, He J F,Han M S, Zhao T S and Zeng L 2023 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications Int. J.Extrem. Manuf. 5 042008
[93] Cramer C, Fischer P and Windhab E J 2004 Drop formation in a co-flowing ambient fluid Chem. Eng. Sci. 59 3045–58
[94] Homma S, Koga J, Matsumoto S, Song M and Tryggvason G 2006 Breakup mode of an axisymmetric liquid jet injected into another immiscible liquid Chem. Eng. Sci.61 3986–96
[95] Guillot P, Colin A, Utada A S and Ajdari A 2007 Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers Phys. Rev. Lett. 99 104502
[96] Utada A S, Fernandez-Nieves A, Stone H A and Weitz D A 2007 Dripping to jetting transitions in coflowing liquid streams Phys. Rev. Lett. 99 094502
[97] Utada A S, Fernandez-Nieves A, Gordillo J M and Weitz D A 2008 Absolute instability of a liquid jet in a coflowing stream Phys. Rev. Lett. 100 014502
[98] Castro-Hernández E, Gundabala V, Fernández-Nieves A and Gordillo J M 2009 Scaling the drop size in coflow experiments New J. Phys. 11 075021
[99] Gupta A, Matharoo H S, Makkar D and Kumar R 2014 Droplet formation via squeezing mechanism in a microfluidic flow-focusing device Comput. Fluids100 218–26
[100] Chen Y P, Wu L Y and Zhang L 2015 Dynamic behaviors of double emulsion formation in a flow-focusing device Int.J. Heat Mass Transfer 82 42–50
[101] Yu W, Li B, Liu X D and Chen Y P 2021 Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device Chem. Eng. Sci. 243 116648
[102] Engl W, Backov R and Panizza P 2008 Controlled production of emulsions and particles by milli- and microfluidic techniques Curr. Opin. Colloid Interface Sci.13 206–16
[103] Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A and Weitz D A 2005 Monodisperse double emulsions generated from a microcapillary device Science 308 537–41
[104] Chen H S, Li J, Shum H C, Stone H A and Weitz D A 2011 Breakup of double emulsions in constrictions Soft Matter7 2345
[105] Takeuchi S, Garstecki P, Weibel D B and Whitesides G M 2005 An axisymmetric flow-focusing microfluidic device Adv. Mater. 17 1067–72
[106] Anna S L, Bontoux N and Stone H A 2003 Formation of dispersions using “flow focusing” in microchannels Appl.Phys. Lett. 82 364–6
[107] Cristini V and Tan Y C 2004 Theory and numerical simulation of droplet dynamics in complex flows—a review Lab Chip 4 257–64
[108] Garstecki P, Gitlin I, DiLuzio W, Whitesides G M,Kumacheva E and Stone H A 2004 Formation of monodisperse bubbles in a microfluidic flow-focusing device Appl. Phys. Lett. 85 2649–51
[109] Garstecki P, Stone H A and Whitesides G M 2005 Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions Phys. Rev.Lett. 94 164501
[110] Ga?nán-Calvo A M, González-Prieto R, Riesco-Chueca P,Herrada M A and Flores-Mosquera M 2007 Focusing capillary jets close to the continuum limit Nat. Phys.3 737–42
[111] Garstecki P, Fuerstman M J, Stone H A and Whitesides G M 2006 Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up Lab Chip 6 437–46
[112] De Menech M, Garstecki P, Jousse F and Stone H A 2008 Transition from squeezing to dripping in a microfluidic T-shaped junction J. Fluid Mech. 595 141–61
[113] Lin R, Fisher J S, Simon M G and Lee A P 2012 Novel on-demand droplet generation for selective fluid sample extraction Biomicrofluidics 6 024103
[114] Ding Y, Casadevall I, Solvas X and deMello A 2015“V-junction”: a novel structure for high-speed generation of bespoke droplet flows Analyst 140 414–21
[115] Abate A R, Poitzsch A, Hwang Y, Lee J, Czerwinska J and Weitz D A 2009 Impact of inlet channel geometry on microfluidic drop formation Phys. Rev. E 80 026310
[116] Sontti S G and Atta A 2020 Numerical insights on controlled droplet formation in a microfluidic flow-focusing device Ind. Eng. Chem. Res. 59 3702–16
[117] Yu W, Liu X D, Zhao Y J and Chen Y P 2019 Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles Chem. Eng.Sci. 203 259–84
[118] Funfschilling D, Debas H, Li H Z and Mason T G 2009 Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics Phys. Rev. E 80 015301
[119] Wu S C, Chen J, Liu X D and Yao F 2021 Experimental study of droplet formation in the cross-junction J. Dispers.Sci. Technol. 42 1233–40
[120] Abate A R and Weitz D A 2009 High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics Small 5 2030–2
[121] Kendall M R, Bardin D, Shih R, Dayton P A and Lee A P 2012 Scaled-up production of monodisperse, dual layer microbubbles using multi-array microfluidic module for medical imaging and drug delivery Bubble Sci. Eng.Technol. 4 12–20
[122] Yu W, Liu X D, Li B and Chen Y P 2022 Experiment and prediction of droplet formation in microfluidic cross-junctions with different bifurcation angles Int. J.Multiph. Flow 149 103973
[123] Mittal N, Cohen C, Bibette J and Bremond N 2014 Dynamics of step-emulsification: from a single to a collection of emulsion droplet generators Phys. Fluids 26 082109
[124] Montessori A, Lauricella M, Succi S, Stolovicki E and Weitz D 2018 Elucidating the mechanism of step emulsification Phys. Rev. Fluids 3 072202(R)
[125] Sugiura S, Nakajima M, Iwamoto S and Seki M 2001 Interfacial tension driven monodispersed droplet formation from microfabricated channel array Langmuir 17 5562–6
[126] Eggersdorfer M L, Seybold H, Ofner A, Weitz D A and Studart A R 2018 Wetting controls of droplet formation in step emulsification Proc. Natl Acad. Sci. USA 115 9479–84
[127] Mulligan M K and Rothstein J P 2012 Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries Microfluid. Nanofluidics 13 65–73
[128] Barbier V, Willaime H, Tabeling P and Jousse F 2006 Producing droplets in parallel microfluidic systems Phys.Rev. E 74 046306
[129] Link D R, Anna S L, Weitz D A and Stone H A 2004 Geometrically mediated breakup of drops in microfluidic devices Phys. Rev. Lett. 92 054503
[130] Yeh C H, Chen Y C and Lin Y C 2011 Generation of droplets with different concentrations using gradient-microfluidic droplet generator Microfluid. Nanofluidics 11 245–53
[131] Shen Q Y, Zhang C, Tahir M F, Jiang S K, Zhu C Y, Ma Y G and Fu T T 2018 Numbering-up strategies of micro-chemical process: uniformity of distribution of multiphase flow in parallel microchannels Chem. Eng.Process. 132 148–59
[132] Herdem M S, Mundhwa M, Farhad S and Hamdullahpur F 2018 Multiphysics modeling and heat distribution study in a catalytic microchannel methanol steam reformer Energy Fuels 32 7220–34
[133] Senn S M and Poulikakos D 2004 Tree network channels as fluid distributors constructing double-staircase polymer electrolyte fuel cells J. Appl. Phys. 96 842–52
[134] Hashimoto M, Shevkoplyas S S, Zaso′nska B, Szymborski T,Garstecki P and Whitesides G M 2008 Formation of bubbles and droplets in parallel, coupled flow-focusing geometries Small 4 1795–805
[135] Li W, Young E W K, Seo M, Nie Z H, Garstecki P,Simmons C A and Kumacheva E 2008 Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators Soft Matter4 258–62
[136] Li W, Greener J, Voicu D and Kumacheva E 2009 Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles Lab Chip 9 2715–21
[137] Yadavali S, Jeong H H, Lee D and Issadore D 2018 Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles Nat.Commun. 9 1222
[138] Kawakatsu T, Kikuchi Y and Nakajima M 1997 Regular-sized cell creation in microchannel emulsification by visual microprocessing method J. Am. Oil Chem. Soc.74 317–21
[139] Wu J Y, Yadavali S, Lee D and Issadore D A 2021 Scaling up the throughput of microfluidic droplet-based materials synthesis: a review of recent progress and outlook Appl.Phys. Rev. 8 031304
[140] Vladisavljevi′c G T, Ekanem E E, Zhang Z L, Khalid N,Kobayashi I and Nakajima M 2018 Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels Chem. Eng. J. 333 380–91
[141] Vladisavljevi′c G T, Kobayashi I and Nakajima M 2008 Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: effect of emulsifier and oil types Powder Technol.183 37–45
[142] Stolovicki E, Ziblat R and Weitz D A 2018 Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance Lab Chip 18 132–8
[143] Amstad E, Chemama M, Eggersdorfer M, Arriaga L R,Brenner M P and Weitz D A 2016 Robust scalable high throughput production of monodisperse drops Lab Chip16 4163–72
[144] Sugiura S, Nakajima M, Tong J H, Nabetani H and Seki M 2000 Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique J. Colloid Interface Sci. 227 95–103
[145] Wang M, Kong C, Liang Q S, Zhao J X, Wen M L, Xu Z B and Ruan X D 2018 Numerical simulations of wall contact angle effects on droplet size during step emulsification RSC Adv. 8 33042–7
[146] Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K and Nakajima M 2008 Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size Microfluid. Nanofluidics 4 167–77
[147] Hoang D A, Haringa C, Portela L M, Kreutzer M T,Kleijn C R and van Steijn V 2014 Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors Chem. Eng. J.236 545–54
[148] Yang C G, Pan R Y and Xu Z R 2015 A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system Chin. Chem. Lett. 26 1450–4
[149] Wu S C, Wu L Y, Chen J, Zhang C B, Liu X D, Chen Y P and Gao W 2023 Splitting behaviors of droplets in fractal tree-shaped microchannels Int. J. Multiph. Flow 163 104440
[150] Chen Y P, Liu X D and Shi M H 2013 Hydrodynamics of double emulsion droplet in shear flow Appl. Phys. Lett.102 051609
[151] Wang J X, Lai H, Zhong M L, Liu X D, Chen Y P and Yao S H 2023 Design and scalable fabrication of liquid metal and nano-sheet graphene hybrid phase change materials for thermal management Small Methods7 2300139
[152] Zhou C F, Yue P T and Feng J J 2006 Formation of simple and compound drops in microfluidic devices Phys. Fluids18 092105
[153] Yu C, Wu L Y, Li L and Liu M F 2019 Experimental study of double emulsion formation behaviors in a one-step axisymmetric flow-focusing device Exp. Therm. Fluid Sci.103 18–28
[154] Nisisako T, Ando T and Hatsuzawa T 2012 High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces Lab Chip 12 3426–35
[155] Romanowsky M B, Abate A R, Rotem A, Holtze C and Weitz D A 2012 High throughput production of single core double emulsions in a parallelized microfluidic device Lab Chip 12 802–7
[156] Eggersdorfer M L, Zheng W, Nawar S, Mercandetti C, Ofner A, Leibacher I, Koehler S and Weitz D A 2017 Tandem emulsification for high-throughput production of double emulsions Lab Chip 17 936–42
[157] Zhu P A and Wang L Q 2017 Passive and active droplet generation with microfluidics: a review Lab Chip 17 34–75
[158] Shi Z, Lai X C, Sun C T, Zhang X G, Zhang L, Pu Z H,Wang R D, Yu H X and Li D C 2020 Step emulsification in microfluidic droplet generation: mechanisms and structures Chem. Commun. 56 9056–66
[159] Rodríguez-Rivero C, Del Valle E M M and Galán M A 2011 Development of a new technique to generate microcapsules from the breakup of non-Newtonian highly viscous fluid jets AlChE J. 57 3436–47
[160] Marcali M, Chen X M, Aucoin M G and Ren C L 2022 Droplet formation of biological non-Newtonian fluid in T-junction generators. I. Experimental investigation Phys.Rev. E 105 025105
[161] Zhang Q D, Zhu C Y, Du W, Liu C, Fu T T, Ma Y G and Li H Z 2018 Formation dynamics of elastic droplets in a microfluidic T-junction Chem. Eng. Res. Des. 139 188–96
[162] Mousavi S, Siavashi M and Bagheri M 2023 Comparison of the jet breakup and droplet formation between non-Newtonian and Newtonian fluids J. Non-Newton. Fluid Mech. 321 105093
[163] Luo Q M and Pentzer E 2020 Encapsulation of ionic liquids for tailored applications ACS Appl. Mater. Interfaces12 5169–76
[164] Santiago R, Lemus J, Moya C, Moreno D, Alonso-Morales N and Palomar J 2018 Encapsulated ionic liquids to enable the practical application of amino acid-based ionic liquids in CO2 capture ACS Sustain. Chem. Eng. 6 14178–87
[165] Song T Q M, Avelar Bonilla G M, Morales-Collazo O, Lubben M J and Brennecke J F 2019 Recyclability of encapsulated ionic liquids for post-combustion CO2 capture Ind. Eng. Chem. Res. 58 4997–5007
[166] Hiraga Y, Koyama K, Sato Y and Smith R L 2018 Measurement and modeling of CO2 solubility in[bmim]Cl—[bmim][Tf2N] mixed-ionic liquids for design of versatile reaction solvents J. Supercrit. Fluids 132 42–50
[167] Lemus J, Da Silva F F A, Palomar J, Carvalho P J and Coutinho J A P 2018 Solubility of carbon dioxide in encapsulated ionic liquids Sep. Purif. Technol.196 41–46
[168] Kaviani S, Kolahchyan S, Hickenbottom K L, Lopez A M and Nejati S 2018 Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials Chem. Eng. J. 354 753–7
[169] Wang P P, Zhu J M, Tang J C, Kang J and Shi L 2022 Morphology and CO2 adsorption performance of novel ionic liquid microcapsules containing [Bmim][PF6] Chem.Eng. Res. Des. 187 633–44
[170] Moore T, Rim G, Park A H A, Mumford K A, Stevens G W and Webley P A 2022 Encapsulation of highly viscous CO2 capture solvents for enhanced capture kinetics:modeling investigation of mass transfer mechanisms Chem. Eng. J. 428 131603
[171] Mohamed A, Krokidas P and Economou I G 2018 CO2 selective metal organic framework ZIF-8 modified through ionic liquid encapsulation: a computational study J.Comput. Sci. 27 183–91
[172] Avelar Bonilla G M, Morales-Collazo O and Brennecke J F 2019 Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids ACS Sustain.Chem. Eng. 7 16858–69
[173] Wang H M, Zhu J M, Tan L, Zhou M and Zhang S Q 2020 Encapsulated ionic liquids for CO2 capture Mater. Chem. Phys. 251 122982
[174] Moya C, Alonso-Morales N, Gilarranz M A, Rodriguez J J and Palomar J 2016 Encapsulated ionic liquids for CO2 capture: using 1-butyl-methylimidazolium acetate for quick and reversible CO2 chemical absorption ChemPhysChem 17 3891–9
[175] Xue C F, Zhu H Y, Du X, An X W, Wang E Y, Duan D H,Shi L J, Hao X G, Xiao B and Peng C J 2017 Unique allosteric effect-driven rapid adsorption of carbon dioxide in a newly designed ionogel [P4444][2-Op]@MCM-41 with excellent cyclic stability and loading-dependent capacity J. Mater. Chem. A 5 6504–14
[176] Knipe J M, Chavez K P, Hornbostel K M, Worthington M A,Nguyen D T, Ye C W, Bourcier W L, Baker S E,Brennecke J F and Stolaroff J K 2019 Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling Environ. Sci.Technol. 53 2926–36
[177] Li L R, Jung H S, Lee J W and Kang Y T 2022 Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms Renew.Sustain. Energy Rev. 162 112441
[178] Zhang F, Wei Y Y, Wu X T, Jiang H Y, Wang W and Li H X 2014 Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions J. Am. Chem. Soc. 136 13963–6
[179] Carné-Sánchez A, Imaz I, Cano-Sarabia M and Maspoch D 2013 A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures Nat. Chem. 5 203–11
[180] Zhang L J, Liand F and Luo L F 2018 Preparation methods of metal organic frameworks and their capture of CO2.IOP Conf. Ser.: Earth Environ. Sci. 108 042104
[181] Hsieh P F, Law Z X, Lin C H and Tsai D H 2022 Understanding solvothermal growth of metal-organic framework colloids for CO2 capture applications Langmuir 38 4415–24
[182] Ameloot R, Vermoortele F, Vanhove W, Roeffaers M B J,Sels B F and De Vos D E 2011 Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability Nat. Chem. 3 382–7
[183] Wu S T, Xin Z, Zhao S C and Sun S T 2019 High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules Nano Res. 12 2736–42
[184] Couck S, Denayer J F M, Baron G V, Rémy T, Gascon J and Kapteijn F 2009 An amine-functionalized MIL-53 metal?organic framework with large separation power for CO2 and CH4 J. Am. Chem. Soc. 131 6326–7
[185] Bae Y S, Spokoyny A M, Farha O K, Snurr R Q, Hupp J T and Mirkin C A 2010 Separation of gas mixtures using Co(II) carborane-based porous coordination polymers Chem. Commun. 46 3478–80
[186] Cavenati S, Grande C A, Rodrigues A E, Kiener C and Müller U 2008 Metal organic framework adsorbent for biogas upgrading Ind. Eng. Chem. Res. 47 6333–5
[187] Caskey S R, Wong-Foy A G and Matzger A J 2008 Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores J. Am. Chem.Soc. 130 10870–1
[188] Aines R D, Spaddaccini C M, Duoss E B, Stolaroff J K,Vericella J, Lewis J A and Farthing G 2013 Encapsulated solvents for carbon dioxide capture Energy Proc.37 219–24
[189] Yew M 2021 Synthesis of Functional Materials for Carbon Capture via Microfluidic Platform (University of Nottingham)
[190] Nabavi S A, Vladisavljevi′c G T, Gu S and Manovi′c V 2016 Semipermeable elastic microcapsules for gas capture and sensing Langmuir 32 9826–35
[191] Wang D Y, Yu W, Gao M, Liu K, Wang T, Park A and Lin Q 2018 A 3D microfluidic device for carbon capture microcapsules production 2018 IEEE Micro Electro Mechanical Systems (Belfast, UK) (IEEE) pp 1193–6
[192] Shi J S, Cui H M, Xu J G and Yan N F 2022 Carbon spheres synthesized from KHCO3 activation of glucose derived hydrochar with excellent CO2 capture capabilities at both low and high pressures Sep. Purif. Technol. 294 121193
[193] Rama S, Zhang Y, Tchuenbou-Magaia F, Ding Y L and Li Y L 2019 Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture Front. Chem. Sci. Eng. 13 672–83
[194] Finn J R and Galvin J E 2018 Modeling and simulation of CO2 capture using semipermeable elastic microcapsules Int. J. Greenhouse Gas Control 74 191–205
[195] Yew M, Ren Y, Koh K S, Sun C G, Snape C and Yan Y Y 2019 Synthesis of microcapsules for carbon capture via needle-based droplet microfluidics Energy Proc.160 443–50