• Photonics Insights
  • Vol. 4, Issue 2, C02 (2025)
Andrew Forbes*
Author Affiliations
  • University of the Witwatersrand, Johannesburg, South Africa
  • show less
    DOI: 10.3788/PI.2025.C02 Cite this Article Set citation alerts
    Andrew Forbes, "Structured light in space and time," Photon. Insights 4, C02 (2025) Copy Citation Text show less
    References

    [1] F. Dickey. Laser beam shaping(2003).

    [2] D. Gossman et al. Optical interference with digital holograms. Am. J. Phys., 84, 508(2016). https://doi.org/10.1119/1.4948604

    [3] A. Forbes et al. Structured light. Nat. Photon., 15, 253(2021). https://doi.org/10.1038/s41566-021-00780-4

    [4] Y. Yang et al. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron. Sci., 2, 230026-1(2023). https://doi.org/10.29026/oes.2023.230026

    [5] C. Rosales-Guzmán et al. Structured light with spatial light modulators(2024).

    [6] A. H. Dorrah, C. Federico. Tunable structured light with flat optics. Science, 376, eabi6860(2022). https://doi.org/10.1126/science.abi6860

    [7] C. He et al. Towards higher-dimensional structured light. Light Sci. Appl., 11, 205(2022). https://doi.org/10.1038/s41377-022-00897-3

    [8] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021). https://doi.org/10.1117/1.AP.3.3.034001

    [9] A. E. Willner et al. Orbital angular momentum of light for communications. Appl. Phys. Rev., 8, 041312(2021). https://doi.org/10.1063/5.0054885

    [10] J. Chen et al. Engineering photonic angular momentum with structured light: a review. Adv. Photonics, 3, 064001(2021). https://doi.org/10.1117/1.AP.3.6.064001

    [11] J. Wang et al. Integrated structured light manipulation. Photon. Insights, 3, R05(2024). https://doi.org/10.3788/PI.2024.R05

    [12] D. E. Spence et al. 60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser. Opt. Lett., 16, 42(1991).

    [13] J. R. Taylor. Wilson Sibbett (1948–2024). Nat. Photonics, 19, 1(2025). https://doi.org/10.1038/s41566-024-01600-1

    [14] A. Weiner. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instr., 71, 1929(2000). https://doi.org/10.1063/1.1150614

    [15] J. D. McKinney et al. Andrew M. Weiner (1958–2024). Nat. Photonics, 18, 400(2024). https://doi.org/10.1038/s41566-024-01429-8

    [16] E. D. Potter et al. Femtosecond laser control of a chemical reaction. Nature, 355, 66(1992). https://doi.org/10.1038/355066a0

    [17] A. Forbes. Sculpting electric currents with structured light. Nat. Photonics, 14, 656(2020). https://doi.org/10.1038/s41566-020-00705-7

    [18] S. Sederberg et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photonics, 14, 680(2020). https://doi.org/10.1038/s41566-020-00713-7

    [19] L. Rego et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019). https://doi.org/10.1126/science.aaw9486

    [20] M. de Oliveira, A. Antonio. Subcycle modulation of light’s orbital angular momentum via a Fourier space-time transformation. Sci. Adv., 11, eadr6678(2025). https://doi.org/10.1126/sciadv.adr6678

    [21] L. Kopf et al. Correlating space, wavelength, and polarization of light: Spatiospectral vector beams. ACS Photonics, 11, 241(2023). https://doi.org/10.1021/acsphotonics.3c01322

    [22] M. Piccardo et al. Broadband control of topological–spectral correlations in space–time beams. Nat. Photonics, 17, 822(2023). https://doi.org/10.1038/s41566-023-01223-y

    [23] X. Liu et al. Spatiotemporal optical wavepackets: from concepts to applications. Photon. Insights, 3, R08(2024). https://doi.org/10.3788/PI.2024.R08

    [24] N. Papasimakis et al. Electromagnetic toroidal excitations in matter and free space. Nat. Mater., 15, 263(2016). https://doi.org/10.1038/nmat4563

    [25] A. Forbes et al. Orbital angular momentum lasers. Nat. Rev. Phys., 6, 352(2024). https://doi.org/10.1038/s42254-024-00715-2