• Chinese Journal of Lasers
  • Vol. 46, Issue 11, 1102011 (2019)
Ying Qiu, Fengying Zhang*, Tengteng Hu, Kun Wang, and Gang Wang
Author Affiliations
  • School of Materials Science and Engineering, Chang'an University, Xi'an, Shaanxi 710064, China
  • show less
    DOI: 10.3788/CJL201946.1102011 Cite this Article Set citation alerts
    Ying Qiu, Fengying Zhang, Tengteng Hu, Kun Wang, Gang Wang. Effect of Laser Power on Microstructure and Hardness of Ti40 Flame-Retardant Titanium Alloy Deposited by Laser Cladding on TC4 Surface[J]. Chinese Journal of Lasers, 2019, 46(11): 1102011 Copy Citation Text show less
    References

    [1] Lin X, Huang W D. Laser additive manufacturing of high-performance metal compo-nents[J]. Scientia Sinica Informationis, 45, 1111(2015). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-PZKX201509002.htm

    [2] Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers, 36, 3204-3209(2009).

    [3] Crossley F J H. Aircraft applications of titanium: a review of the past and potential for the future[J]. Journal of Aircraft, 18, 993-1002(1981).

    [4] Adesina O S, Mthisi A. Popoola A P I. The effect of laser based synthesized Ti-Co coating on microstructure and mechanical properties of Ti6al4v alloy[J]. Procedia Manufacturing, 7, 46-52(2017).

    [5] Zhao Z, Chen J, Lu X F et al. Formation mechanism of the α variant and its influence on the tensile properties of laser solid formed Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering: A, 691, 16-24(2017). http://www.sciencedirect.com/science/article/pii/S0921509317303258

    [6] Mi G B, Huang X, Cao J X et al. Theoretical research on oxide film fracture behavior during titanium particle ignition[J]. Journal of Aeronautical Materials, 32, 25-31(2012).

    [7] Zhao Y Q, Zhu K Y, Qu H L et al. Microstructures of a burn resistant highly stabilized β-titanium alloy[J]. Materials Science and Engineering: A, 282, 153-157(2000). http://www.sciencedirect.com/science/article/pii/S0921509399007613

    [8] Cao J X, Huang X, Mi G B et al. Research progress on application technique of Ti-V-Cr burn resistant titanium alloys[J]. Journal of Aeronautical Materials, 34, 92-97(2014).

    [9] Zhang F Y, Qiu Y, Mei M et al. Burn-resistant property of laser solid forming Ti-25V-15Cr alloy[J]. Rare Metal Materials and Engineering, 47, 1771-1778(2018).

    [10] Weng F, Chen C Z, Yu H J. Research status of laser cladding on titanium and its alloys: a review[J]. Materials & Design, 58, 412-425(2014). http://www.sciencedirect.com/science/article/pii/S0261306914001095

    [11] Mahamood R M. Laser metal deposition of metals and alloys[M]. ∥Manchester B D. Laser metal deposition process of metals, alloys, and composite materials. Switzerland, Cham: Springer, 93-118(2017).

    [12] Wu P, Jiang E Y, Zhou C C et al. Microstructure and properties of Ni/WC composite coating prepared by laser cladding[J]. Chinese Journal of Lasers, 30, 357-360(2003).

    [13] Wu X, Sharman R, Mei J et al. Microstructure and properties of a laser fabricated burn-resistant Ti alloy[J]. Materials & Design, 25, 103-109(2004). http://www.sciencedirect.com/science/article/pii/S0261306903002231

    [14] Li B, Ding R D, Shen Y F et al. Preparation of Ti-Cr and Ti-Cu flame-retardant coatings on Ti-6Al-4V using a high-energy mechanical alloying method: a preliminary research[J]. Materials & Design, 35, 25-36(2012).

    [15] Yang X K. Study on microstructure and burn-resistant properties of Ti-25V-15Cr alloy by laser solid forming Xi'an: Chang'an[D]. University(2016).

    [16] Sun Y W, Hao M Z. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd∶YAG laser[J]. Optics and Lasers in Engineering, 50, 985-995(2012). http://www.sciencedirect.com/science/article/pii/S014381661200019X

    [17] Guan Z Z[M]. Handbook of laser processing technology(2007).

    [18] Wang D Z, Hu Q W, Zheng Y L et al. Study on deposition rate and laser energy efficiency of laser-induction hybrid cladding[J]. Optics & Laser Technology, 77, 16-22(2016). http://www.sciencedirect.com/science/article/pii/S0030399215002479

    [19] Mikael Abramovic B. Infrared radiation: a handbook for applications, with a collection of reference tables[M]. New York, NY: Plenum, 636(1968).

    [20] Tan Z, Guo G W[M]. Thermophysical properties of engineering alloys, 21-46(1994).

    [21] Pan H, Zhao J F, Liu Y L et al. Controllability research on dilution ratio of nickel-based superalloy by laser cladding reparation[J]. Chinese Journal of Lasers, 40, 0403007(2013).

    [22] Liu Y, Liang C P, Liu W S et al. Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure[J]. Journal of Alloys and Compounds, 763, 376-383(2018). http://www.sciencedirect.com/science/article/pii/S092583881832022X

    [23] Zhang B C[M]. Nonferrous metals and their heat treatment(1993).

    Ying Qiu, Fengying Zhang, Tengteng Hu, Kun Wang, Gang Wang. Effect of Laser Power on Microstructure and Hardness of Ti40 Flame-Retardant Titanium Alloy Deposited by Laser Cladding on TC4 Surface[J]. Chinese Journal of Lasers, 2019, 46(11): 1102011
    Download Citation