• Nano-Micro Letters
  • Vol. 16, Issue 1, 266 (2024)
Qinhua Gu1,2, Yiqi Cao1,3, Junnan Chen1,2, Yujie Qi1..., Zhaofeng Zhai1, Ming Lu1,3,*, Nan Huang1,2 and Bingsen Zhang1,2,**|Show fewer author(s)
Author Affiliations
  • 1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
  • 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
  • 3The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01482-6 Cite this Article
    Qinhua Gu, Yiqi Cao, Junnan Chen, Yujie Qi, Zhaofeng Zhai, Ming Lu, Nan Huang, Bingsen Zhang. Fluorine-Modulated MXene-Derived Catalysts for Multiphase Sulfur Conversion in Lithium–Sulfur Battery[J]. Nano-Micro Letters, 2024, 16(1): 266 Copy Citation Text show less
    References

    [1] G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    [2] Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).

    [3] Z. Yuan, H.-J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).

    [4] Y.W. Song, J.L. Qin, C.X. Zhao, M. Zhao, L.P. Hou et al., The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium-sulfur batteries. J. Energy Chem. 64, 568–573 (2022).

    [5] W. Hua, H. Li, C. Pei, J. Xia, Y. Sun et al., Selective catalysis remedies polysulfide shuttling in lithium–sulfur batteries. Adv. Mater. 33, 2101006 (2021).

    [6] N. Chai, Y. Qi, Q. Gu, J. Chen, M. Lu et al., CoOx nanoparticles loaded on carbon spheres with synergistic effects for effective inhibition of shuttle effect in Li–S batteries. Nanoscale 15, 5327–5336 (2023).

    [7] M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58, 3779–3783 (2019).

    [8] B. Jiang, D. Tian, Y. Qiu, X.Q. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano-Micro Lett. 14, 40 (2022).

    [9] C.H. Zhao, B. Jiang, Y. Huang, X. Sun, M. Wang et al., Highly active and stable oxygen vacancies via sulfur modification for efficient catalysis in lithium-sulfur batteries. Energy Environ. Sci. 16, 5490–5499 (2023).

    [10] C.H. Zhao, Y. Huang, B. Jiang, Z.Y. Chen, X.B. Yu et al., The origin of strain effects on sulfur redox electrocatalyst for lithium sulfur batteries. Adv. Energy Mater. 14, 2302586 (2024).

    [11] Q. Gu, Y. Qi, W. Hua, T. Shang, J. Chen et al., Engineering Pt heterogeneous catalysts for accelerated liquid-solid redox conversion in Li–S batteries. J. Energy Chem. 69, 490–496 (2022).

    [12] Q. Gu, Y. Qi, J. Chen, M. Lu, B. Zhang et al., Cobalt nanoparticles loaded on MXene for Li–S batteries: Anchoring polysulfides and accelerating redox reactions. Small 18, 2204005 (2022).

    [13] J.J. Wang, G.Q. Cao, R.X. Duan, X.Y. Li, X.F. Li et al., Advances in single metal atom catalysts enhancing kinetics of sulfur cathode. Acta Phys. Chim. Sin. 39, 2212005 (2023).

    [14] Y. Zhang, Y. Qiu, L.S. Fan, X. Sun, B. Jiang et al., Dual-atoms iron sites boost the kinetics of reversible conversion of polysulfide for high-performance lithium-sulfur batteries. Energy Storage Mater. 63, 103026 (2023).

    [15] H. Liu, F. Liu, Z. Qu, J. Chen, H. Liu et al., High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2, e9120049 (2023).

    [16] K. Chen, Z.H. Sun, R.P. Fang, F. Li, H.M. Cheng et al., Development of graphene-based materials for lithium–sulfur batteries. Acta Phys. Chim. Sin. 34, 377–390 (2018).

    [17] B. Zhang, C. Luo, G. Zhou, Z.Z. Pan, J. Ma et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 31, 2100793 (2021).

    [18] L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019).

    [19] P. Chen, T. Zhou, S. Wang, N. Zhang, Y. Tong et al., Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem. Int. Ed. 57, 15471–15475 (2018).

    [20] X. Chen, K. Fan, Y. Liu, Y. Li, X. Liu et al., Recent advances in fluorinated graphene from synthesis to applications: critical review on functional chemistry and structure engineering. Adv. Mater. 34, 2101665 (2022).

    [21] Y. Tian, R. Chen, X. Liu, L. Yin, D. Yang et al., Fluorine-regulated carbon nanotubes decorated with Co single atoms for multi-site electrocatalysis toward two-electron oxygen reduction. Ecomat 5, e12336 (2023).

    [22] B. Cao, L. Zeng, H. Liu, J. Shang, L. Wang et al., Synthesis of the platinum nanoribbons regulated by fluorine and applications in electrocatalysis. Inorg. Chem. 60, 4366–4370 (2021).

    [23] T. Li, W. Shi, Q. Mao, X. Chen, Regulating the photoluminescence of carbon dots via a green fluorine-doping-derived surface-state-controlling strategy. J. Mater. Chem. C 9, 17357–17364 (2021).

    [24] K. Chen, M. Lei, Z. Yao, Y. Zheng, J. Hu et al., Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes. Sci. Adv. 7, eabj1491 (2021).

    [25] J. Meng, Z. Xiao, L. Zhu, X. Zhang, X. Hong et al., Fluorinated electrode materials for high-energy batteries. Matter 6, 1685–1716 (2023).

    [26] P. Zhou, Y. Xia, W.-H. Hou, S. Yan, H.-Y. Zhou et al., Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry. Nano Lett. 22, 5936–5943 (2022).

    [27] Y.M. Dai, Q.J. Chen, C.C. Hu, Y.Y. Huang, W.Y. Wu et al., Copper fluoride as a low-cost sodium-ion battery cathode with high capacity. Chin. Chem. Lett. 33, 1435–1438 (2022).

    [28] J.L. Lian, Y. Wu, Y.C. Guo, Z.Y. Zhao, Q.H. Zhang et al., Design of hierarchical and mesoporous FeF3/rGO hybrids as cathodes for superior lithium-ion batteries. Chin. Chem. Lett. 3, 3931–3935 (2022).

    [29] C.Z. Lai, K.Y. Chen, Y.J. Zheng, J.W. Meng, J.L. Hu et al., Tailored deep-eutectic solvent method to enable 3D porous iron fluoride bricks for conversion-type lithium batteries. J. Energy Chem. 8, 178–187 (2023).

    [30] Y.L. Xu, W.J. Xiong, J.Q. Huang, X.L. Tang, H.Q. Wang et al., Pressure-induced growth of coralloid-like FeF2 nanocrystals to enable high-performance conversion cathode. J. Energy Chem. 79, 291–300 (2023).

    [31] M.H. Kim, T.-U. Wi, J. Seo, A. Choi, S. Ko et al., Design principles for fluorinated interphase evolution via conversion-type alloying processes for anticorrosive lithium metal anodes. Nano Lett. 23, 3582–3591 (2023).

    [32] X. Sun, D. Tian, X. Song, B. Jiang, C. Zhao et al., In situ conversion to construct fast ion transport and high catalytic cathode for high-sulfur loading with lean electrolyte lithium-sulfur battery. Nano Energy 95, 106979 (2022).

    [33] W. Hou, Y. Zhai, Z. Chen, C. Liu, C. Ouyang et al., Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries. Appl. Phys. Lett. 122, 043903 (2023).

    [34] K. Lemoine, A. Hemon-Ribaud, M. Leblanc, J. Lhoste, J.M. Tarascon et al., Fluorinated materials as positive electrodes for Li- and Na-ion batteries. Chem. Rev. 122, 14405–14439 (2022).

    [35] J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022).

    [36] M. Lu, W. Han, H. Li, W. Shi, J. Wang et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater. 16, 163–168 (2019).

    [37] H. Li, M. Lu, W. Han, H. Li, Y. Wu et al., Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage. J. Energy Chem. 38, 50–54 (2019).

    [38] P.F. Huang, W.Q. Han, Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Lett. 15, 68 (2023).

    [39] X. Miao, Z. Li, S. Liu, J. Wang, S. Yang, MXenes in tribology: Current status and perspectives. Adv. Powder. Mater. 2, 100092 (2023).

    [40] Q. Gu, M. Lu, J. Chen, Y. Qi, B. Zhang, Three-dimensional architectures based on carbon nanotube bridged Ti2C MXene nanosheets for Li–S batteries. Particuology 57, 139–145 (2021).

    [41] S.Z. Zhang, N. Zhong, X. Zhou, M.J. Zhang, X.P. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett. 12, 112 (2020).

    [42] G. Liang, X. Li, Y. Wang, S. Yang, Z. Huang et al., Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 1, 9120002 (2022).

    [43] F. Pan, X. Wu, D. Batalu, W. Lu, H. Guan, Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. Adv. Powder. Mater. 2, 100100 (2023).

    [44] Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12, 2381–2388 (2018).

    [45] G.S. Gund, J.H. Park, R. Harpalsinh, M. Kota, J.H. Shin et al., MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 3, 164–176 (2019).

    [46] J.H. Heo, F. Zhang, J.K. Park, H.J. Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6, 1672–1688 (2022).

    [47] B.P. Thapaliya, C.J. Jafta, H. Lyu, J. Xia, H.M. Meyer et al., Fluorination of MXene by elemental F2 as electrode material for lithium-ion batteries. Chemsuschem 12, 1316–1324 (2019).

    [48] Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin et al., Ti3C2 MXene-derived Sodium/Potassium titanate nanoribbons for high-performance Sodium/Potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017).

    [49] J. Chen, Y. Qi, M. Lu, S. Dong, B. Zhang, Quantitative analysis of the interface between titanium dioxide support and noble metal by electron energy loss spectroscopy. ACS Appl. Mater. Interfaces 15, 42104–42111 (2023).

    [50] X. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao et al., Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium–sulfur batteries. Nat. Commun. 14, 291 (2023).

    [51] C. Prehal, J.M. von Mentlen, S.D. Talian, A. Vizintin, R. Dominko et al., On the nanoscale structural evolution of solid discharge products in lithium–sulfur batteries using operando scattering. Nat. Commun. 13, 6326 (2022).

    [52] Q. Gu, M. Lu, Y. Cao, B. Zhang, Revealing the catalytic conversion via in situ characterization for lithium–sulfur batteries. Renewables 1, 1–21 (2023).

    [53] Y. Song, W. Cai, L. Kong, J. Cai, Q. Zhang et al., Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects. Adv. Energy Mater. 10, 1901075 (2020).

    [54] J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng et al., Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 31, 2101980 (2021).

    [55] J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries. ACS Nano 16, 15734–15759 (2022).

    [56] F.Y. Fan, W.C. Carter, Y.M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 27, 5203–5209 (2015).

    [57] J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium–sulfur batteries. Energy Storage Mater. 20, 55–70 (2019).

    [58] J. Zhang, G. Xu, Q. Zhang, X. Li, Y. Yang et al., Mo-O-C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium–sulfur batteries. Adv. Sci. 9, 2201579 (2022).

    [59] W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, 2106370 (2022).

    [60] J. Tan, D. Liu, X. Xu, L. Mai, In situ/operando characterization techniques for rechargeable lithium–sulfur batteries: a review. Nanoscale 9, 19001–19016 (2017).

    [61] S.Y. Qiu, C. Wang, Z.X. Jiang, L.S. Zhang, L.L. Gu et al., Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12, 16678–16684 (2020).

    [62] J.X. Huang, Y.Y. Hu, J.Z. Li, H. Wang, T.S. Wang et al., A flexible supercapacitor with high energy density driven by MXene/deep eutectic solvent gel polyelectrolyte. ACS Energy Lett. 8, 2316–2324 (2023).

    [63] R. Sun, J. Hu, X. Shi, J. Wang, X. Zheng, Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv. Funct. Mater. 31, 2104858 (2021).

    [64] Q. Gong, L. Hou, T. Li, Y. Jiao, P. Wu, Regulating the molecular interactions in polymer binder for high-performance lithium–sulfur batteries. ACS Nano 16, 8449–8460 (2022).

    [65] C. Gao, J. Yang, X. Han, M. Abuzar, Y. Chen, An in situ decorated cathode with LiF and F@C for performance enhanced Li–S batteries. Chem. Commun. 56, 6444–6447 (2020).

    [66] Y.H. Liu, C.Y. Wang, S.L. Yang, F.F. Cao, H. Ye, 3D Mxene architectures as sulfur hosts for high-performance lithium–sulfur batteries. J. Energy Chem. 66, 429–439 (2022).

    [67] T.P. Zhang, W.L. Shao, S.Y. Liu, Z.H. Song, R.Y. Mao et al., A flexible design strategy to modify Ti3C2Tx Mxene surface terminations via nucleophilic substitution for long-life Li–S batteries. J. Energy Chem. 74, 349–358 (2022).

    [68] F.N. Jiang, S.J. Yang, Z.X. Chen, H. Liu, H. Yuan et al., Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells. Particuology 79, 10–17 (2023).

    [69] J. Zhou, S.W. Sun, X.C. Zhou, X.Y. Rao, X.Y. Xu et al., Defect engineering enables an advanced separator modification for high-performance lithium–sulfur batteries. Chem. Eng. J. 487, 150574 (2024).

    [70] H. Cheng, S.C. Zhang, S. Li, C. Gao, S.H. Zhao et al., Engineering Fe and V coordinated bimetallic oxide nanocatalyst enables enhanced polysulfides mediation for high energy density Li–S battery. Small 18, 2202557 (2022).

    [71] W.Q. Yao, J. Xu, Y.J. Cao, Y.F. Meng, Z.L. Wu et al., Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium–sulfur chemistry. ACS Nano 16, 10783–10797 (2022).

    Qinhua Gu, Yiqi Cao, Junnan Chen, Yujie Qi, Zhaofeng Zhai, Ming Lu, Nan Huang, Bingsen Zhang. Fluorine-Modulated MXene-Derived Catalysts for Multiphase Sulfur Conversion in Lithium–Sulfur Battery[J]. Nano-Micro Letters, 2024, 16(1): 266
    Download Citation