• Chinese Journal of Lasers
  • Vol. 51, Issue 8, 0811004 (2024)
Qianjin Wang1、2, Pengshuai Sun2, Zhirong Zhang1、2、3、4、*, Yongjun Cai5, Wenbiao Huang1、2, Tao Pang2, Hua Xia2, and Bian Wu2
Author Affiliations
  • 1School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 2Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 3Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 4Advanced Laser Technology Laboratory of Anhui Province, National University of Defense Technology, Hefei 230037, Anhui , China
  • 5PipeChina General Academy of Science & Technology, Langfang 065000, Hebei , China
  • show less
    DOI: 10.3788/CJL231597 Cite this Article Set citation alerts
    Qianjin Wang, Pengshuai Sun, Zhirong Zhang, Yongjun Cai, Wenbiao Huang, Tao Pang, Hua Xia, Bian Wu. Near-infrared C2H4 Detection Based on Calibrated Direct Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(8): 0811004 Copy Citation Text show less
    References

    [1] Chen K, Zhang B, Guo M et al. Photoacoustic trace gas detection of ethylene in high-concentration methane background based on dual light sources and fiber-optic microphone[J]. Sensors and Actuators B: Chemical, 310, 127825(2020).

    [2] Xie J, Xue S, Cheng W M et al. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system[J]. International Journal of Coal Geology, 85, 123-127(2011).

    [3] Deng J, Xiao Y, Li Q W et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 157, 261-269(2015).

    [4] Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 44, 0511001(2017).

    [5] Tanaka K, Akishima K, Sekita M et al. Measurement of ethylene in combustion exhaust using a 3.3-μm distributed feedback interband cascade laser with wavelength modulation spectroscopy[J]. Applied Physics B, 123, 219(2017).

    [6] Teodoro C G, Schramm D U, Sthel M S et al. CO2 laser photoacoustic detection of ethylene emitted by diesel engines used in urban public transports[J]. Infrared Physics & Technology, 53, 151-155(2010).

    [7] Zhang L W, Zhang Z R, Wang Q J et al. A sensitive carbon monoxide sensor for industrial process control based on laser absorption spectroscopy with a 2.3 μm distributed feedback laser[J]. Optics and Lasers in Engineering, 152, 106950(2022).

    [8] Sun L Q, Zou M L, Wang X. Application of tunable diode laser absorption spectroscopy in breath diagnosis[J]. Chinese Journal of Lasers, 48, 1511001(2021).

    [9] Pang T, Sun P S, Zhang Z R et al. Design of compact full-range laser methane sensor with wide temperature range[J]. Acta Photonica Sinica, 49, 1012002(2020).

    [10] Liu N W, Xu L G, Zhou S et al. Simultaneous detection of multiple atmospheric components using an NIR and MIR laser hybrid gas sensing system[J]. ACS Sensors, 5, 3607-3616(2020).

    [11] Gu M S, Chen J J, Zhang Y P et al. Portable TDLAS sensor for online monitoring of CO2 and H2O using a miniaturized multi-pass cell[J]. Sensors, 23, 2072(2023).

    [12] Zhang J, Du J Y, Jiang C et al. Measurement of δ18O in water vapor using a tunable diode laser-based spectrometer[J]. Applied Physics B, 129, 80(2023).

    [13] Li J Y, Yang X, Zhang C G et al. Kalman filtering with optimized parameters for gas measurement using laser absorption spectroscopy[J]. Acta Optica Sinica, 42, 1830001(2022).

    [14] Sun Y L, Zhu X Y, Wu D K et al. Design and experimental study of mid-infrared TDLAS system based on anti-resonant hollow core fiber[J]. Acta Optica Sinica, 43, 1306005(2023).

    [15] Zhang Z R, Sun P S, Pang T et al. Application of laser absorption spectroscopy for identification gases in industrial production processes and early safety warning[J]. Optics and Precision Engineering, 26, 1925-1937(2018).

    [16] Raza M, Xu K, Lu Z M et al. Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption spectroscopy[J]. Optics & Laser Technology, 154, 108285(2022).

    [17] Shao L G, Chen J J, Wang K Y et al. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation[J]. Sensors and Actuators B: Chemical, 352, 130995(2022).

    [18] Yi Y, Kun D, Li R et al. Accurate temperature prediction with small absorption spectral data enabled by transfer machine learning[J]. Optics Express, 29, 40699-40709(2021).

    [19] Cao Z, Gao X, Lu F H et al. Laser absorption spectral tomography for dynamical combustion monitoring[J]. Chinese Journal of Lasers, 49, 1904002(2022).

    [20] Liu Y H, Ma Y F. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology[J]. Chinese Optics Letters, 21, 033001(2023).

    [21] Zhang G, Gao G Z, Zhang T et al. Absorption spectroscopy of ethylene near 1.62 µm at high temperatures[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 241, 106748(2020).

    [22] Zhang T, Zhang G, Liu X et al. A TDLAS sensor for simultaneous measurement of temperature and C2H4 concentration using differential absorption scheme at high temperature[J]. Frontiers in Physics, 8, 44(2020).

    [23] Li J Y, Du Z H, Zhang Z Y et al. Hollow waveguide-enhanced mid-infrared sensor for fast and sensitive ethylene detection[J]. Sensor Review, 37, 82-87(2017).

    [24] Wang W F, Yang B, Liu H F et al. A multiline fitting method for measuring ethylene concentration based on WMS-2f/1f[J]. Scientific Reports, 13, 15302(2023).

    [25] Gao G Z, Zhang T, Zhang G et al. Simultaneous and interference-free measurements of temperature and C2H4 concentration using a single tunable diode laser at 1.62 µm[J]. Optics Express, 27, 17887-17904(2019).

    [26] Zou M L, Sun L Q, Wang X. Multigas sensing based on wavelength modulation spectroscopy using frequency division multiplexing combined with time division multiplexing[J]. IEEE Sensors Journal, 22, 12930-12938(2022).

    [27] Wang Z, Du Y J, Ding Y J et al. Monitoring of ambient methane and carbon dioxide concentrations based on wavelength modulationdirect absorption spectroscopy[J]. Acta Physica Sinica, 69, 064205(2020).

    [28] Li S M, Sun L Q. Natural logarithm wavelength modulation spectroscopy: a linear method for any large absorbance[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 254, 119601(2021).

    [29] Gordon I E, Rothman L S, Hill C et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3-69(2017).

    Qianjin Wang, Pengshuai Sun, Zhirong Zhang, Yongjun Cai, Wenbiao Huang, Tao Pang, Hua Xia, Bian Wu. Near-infrared C2H4 Detection Based on Calibrated Direct Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(8): 0811004
    Download Citation