[4] PALYANOV Y N, KUPRIYANOV I N, KHOKHRYAKOV A F, et al. Crystal growth of diamond[M]//Handbook of Crystal Growth. Amsterdam: Elsevier, 2015: 671-713.
[5] ARNAULT J C, SAADA S, RALCHENKO V. Chemical vapor deposition single-crystal diamond: a review[J]. Phys Rapid Res Ltrs, 2022, 16(1): 2100354.
[6] LEBEDEV V, ENGELS J, KUSTERMANN J, et al. Growth defects in heteroepitaxial diamond[J]. J Appl Phys, 2021, 129(16): 165301.
[7] SILVA F, ACHARD J, BRINZA O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth[J]. Diam Relat Mater, 2009, 18(5-8): 683-697.
[8] SCHRECK M, ASMUSSEN J, SHIKATA S, et al. Large-area high-quality single crystal diamond[J]. MRS Bull, 2014, 39(6): 504-510.
[9] LIANG Q, YAN C S, MENG Y F, et al. Recent advances in high-growth rate single-crystal CVD diamond[J]. Diam Relat Mater, 2009, 18(5-8): 698-703.
[12] TALLAIRE A, OUISSE T, LANTREIBECQ A, et al. Identification of dislocations in synthetic chemically vapor deposited diamond single crystals[J]. Cryst Growth Des, 2016, 16(5): 2741-2746.
[13] KATO Y, UMEZAWA H, YAMAGUCHI H, et al. Structural analysis of dislocations in type-IIa single-crystal diamond[J]. Diam Relat Mater, 2012, 29: 37-41.
[14] BOUSSADI A, TALLAIRE A, KASU M, et al. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector[J]. Diam Relat Mater, 2018, 83: 162-169.
[15] TALLAIRE A, BRINZA O, MILLE V, et al. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole[J]. Adv Mater, 2017, 29(16): 1604823.
[16] TALLAIRE A, ACHARD J, BRINZA O, et al. Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates[J]. Diam Relat Mater, 2013, 33: 71-77.
[17] TOROS A, KISS M, GRAZIOSI T, et al. Reactive ion etching of single crystal diamond by inductively coupled plasma: state of the art and catalog of recipes[J]. Diam Relat Mater, 2020, 108: 107839.
[19] ALI B, LITVINYUK I V, RYBACHUK M. Femtosecond laser micromachining of diamond: current research status, applications and challenges[J]. Carbon, 2021, 179: 209-226.
[21] ZHIMULEV E I, CHEPUROV A I, SINYAKOVA E F, et al. Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond[J]. Geochem Int, 2012, 50(3): 205-216.
[22] RALCHENKO V G, KONONENKO T V, PIMENOV S M, et al. Catalytic interaction of Fe, Ni and Pt with diamond films: patterning applications[J]. Diam Relat Mater, 1993, 2(5-7): 904-909.
[25] NAAMOUN M, TALLAIRE A, SILVA F, et al. Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment[J]. Phys Status Solidi A, 2012, 209(9): 1715-1720.
[26] ZHANG Z Q, SONG Y T, GOU L. Evolution of surface morphology and optical transmittance of single crystal diamond film by epitaxial growth[J]. AIP Adv, 2019, 9(9): 095048.
[27] LLORET F, GUTIERREZ M, ARAUJO D, et al. MPCVD diamond lateral growth through microterraces to reduce threading dislocations density[J]. Phys Status Solidi A, 2017, 214(11): 1700242.
[28] MEHMEL L, ISSAOUI R, BRINZA O, et al. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates[J]. Appl Phys Lett, 2021, 118(6): 061901.