• High Power Laser and Particle Beams
  • Vol. 36, Issue 12, 122004 (2024)
Zhiyang Xia1, Yuanyuan Kuang1,2, Yan Lu1,*, and Ming Yang1,3,*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
  • 2School of Electronic and Information Engineering, Anhui University, Hefei 230601, China
  • 3Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
  • show less
    DOI: 10.11884/HPLPB202436.240015 Cite this Article
    Zhiyang Xia, Yuanyuan Kuang, Yan Lu, Ming Yang. High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks[J]. High Power Laser and Particle Beams, 2024, 36(12): 122004 Copy Citation Text show less
    References

    [1] Adrian R J. Twenty years of particle image velocimetry[J]. Exp Fluids, 39, 159-169(2005).

    [2] Yan Chao, Yu Jian, Xu Jinglei et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Adv Mech, 41, 562-589(2001).

    [3] Kuang Yuanyang, Lu Yan, Lin Zhi et al. Coupled model analysis of the ablative Rayleigh–Taylor instability[J]. Plasma Sci Technol, 25, 055201(2023).

    [4] Fan Zhengfeng, Luo Jisheng, Ye Wenhua et al. Weakly nonlinear ablative Rayleigh–Taylor instability at preheated ablation front[J]. Phys Plasmas, 16, 102104(2009).

    [5] Ye Wenhua, Wang Lifeng, He Xiantu. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Phys Plasmas, 17, 122704(2010).

    [6] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [7] Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolution neural network[J]. Chin J Comput, 40, 1229-1251(2017).

    [8] Lecun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 86, 2278-2324(1998).

    [9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 60, 84-90(2017).

    [10] Simonyan K, Zisserman A. Very deep convolutional wks f largescale image recognition[DBOL]. arXiv preprint arXiv: 1409.1556, 2014.

    [11] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[C]Proceedings of 2015 IEEE Conference on Computer Vision Pattern Recognition (CVPR). 2015: 19.

    [12] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR). 2016: 770778.

    [13] Jin Xiaowei, Cheng Peng, Chen Wenli et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Phys Fluids, 30, 047105(2018).

    [14] Sekar V, Jiang Qinghua, Shu Chang et al. Fast flow field prediction over airfoils using deep learning approach[J]. Phys Fluids, 31, 057103(2019).

    [15] Fukami K, Fukagata K, Taira K. Super-resolution reconstruction of turbulent flows with machine learning[J]. J Fluid Mech, 870, 106-120(2019).

    [16] Deng Zhiwen, He Chuangxin, Liu Yingzheng et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Phys Fluids, 31, 125111(2019).

    [17] Liu Bo, Tang Jiupeng, Huang Haibo et al. Deep learning methods for super-resolution reconstruction of turbulent flows[J]. Phys Fluids, 32, 025105(2020).

    [18] Zhou Xuhui, McClure J E, Chen Cheng et al. Neural network–based pore flow field prediction in porous media using super resolution[J]. Phys Rev Fluid, 7, 074302(2022).

    [19] Jagodinski E, Zhu Xingquan, Verma S. Inverse identification of dynamically important regions in turbulent flows using three-dimensional convolutional neural networks[J]. Phys Rev Fluids, 8, 094605(2023).

    [20] Gallis M A, Koehler T P, Torczynski J R et al. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability[J]. Phys Rev Fluids, 1, 043403(2016).

    [21] Fu Chengquan, Zhao Zhiye, Xu Xin et al. Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh-Taylor instability[J]. Phys Rev Fluids, 7, 023902(2022).

    [22] Piriz A R, Cortázar O D, López Cela J J et al. The Rayleigh-Taylor instability[J]. Am J Phys, 74, 1095-1098(2006).

    [23] Zhong Baojiang, Lu Zhifang, Ji Jiahuan. Review on image interpolation techniques[J]. J Data Acquis Process, 31, 1083-1096(2016).

    [24] Shi Wenzhe, Caballero J, Huszár F, et al. Realtime single image video superresolution using an efficient subpixel convolutional neural wk[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR). 2016: 18741883.

    [25] Wang Mengjie, Yang Xiaomin, Anisetti M et al. Image super-resolution via enhanced multi-scale residual network[J]. J Parallel Distrib Comput, 152, 57-66(2021).

    [26] Kingma D P, Ba J. Adam: a method f stochastic optimization[C]Proceedings of the 3rd International Conference on Learning Representations. 2015.

    Zhiyang Xia, Yuanyuan Kuang, Yan Lu, Ming Yang. High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks[J]. High Power Laser and Particle Beams, 2024, 36(12): 122004
    Download Citation