• Acta Photonica Sinica
  • Vol. 51, Issue 10, 1026002 (2022)
Lei ZHANG*, Yunfan XU, Bobo DU, Huimin DING, Xiaoyong WEI, and Zhuo XU
Author Affiliations
  • Key Laboratory of Multifunctional Materials and Structures,Ministry of Education,School of Electronic Scienceand Engineering,Xi′an Jiaotong University,Xi′an710049,China
  • show less
    DOI: 10.3788/gzxb20225110.1026002 Cite this Article
    Lei ZHANG, Yunfan XU, Bobo DU, Huimin DING, Xiaoyong WEI, Zhuo XU. Advances in Electrically Tunable Metasurfaces(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1026002 Copy Citation Text show less
    References

    [1] C W QIU, T ZHANG, G HU et al. Quo vadis, metasurfaces?. Nano Letters, 21, 5461-5474(2021).

    [2] L ZHANG, S MEI, K HUANG et al. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 4, 818-833(2016).

    [3] I ZUBRITSKAYA, N MACCAFERRI, X INCHAUSTI EZEIZA et al. Magnetic control of the chiroptical plasmonic surfaces. Nano Letters, 18, 302-307(2018).

    [4] A CHRISTOFI, Y KAWAGUCHI, A ALU et al. Giant enhancement of faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Optics Letters, 43, 1838-1841(2018).

    [5] E A A POGNA, M CELEBRANO, A MAZZANTI et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna. ACS Nano, 15, 11150-11157(2021).

    [6] S LIU, J HAN, X CHENG et al. Mechanism of all-optical spatial light modulation in graphene dispersion. The Journal of Physical Chemistry C, 125, 16598-16604(2021).

    [7] D T SCHOEN, A L HOLSTEEN, M L BRONGERSMA. Probing the electrical switching of a memristive optical antenna by STEM EELS. Nature Communications, 7, 12162(2016).

    [8] D FRANKLIN, R FRANK, S T WU et al. Actively addressed single pixel full-colour plasmonic display. Nature Communications, 8, 15209(2017).

    [9] S H KIM, J B YOU, Y G HA et al. Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array. Optics Letters, 44, 411-414(2019).

    [10] S J KIM, H YUN, S CHOI et al. Dynamic phase-change metafilm absorber for strong designer modulation of visible light. Nanophotonics, 10, 713-725(2020).

    [11] J ZOU, Q YANG, E L HSIANG et al. Fast-response liquid crystal for spatial light modulator and LiDAR applications. Crystals, 11, 93(2021).

    [12] Z XING, W FAN, D HUANG et al. High laser damage threshold liquid crystal optical switch based on a gallium nitride transparent electrode. Optics Letters, 45, 3537-3540(2020).

    [13] M WUTTIG, H BHASKARAN, T TAUBNER. Phase-change materials for non-volatile photonic applications. Nature Photonics, 11, 465-476(2017).

    [14] Y WANG, P LANDREMAN, D SCHOEN et al. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology, 16, 667-672(2021).

    [15] B ZHANG, L WANG, F CHEN. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser & Photonics Reviews, 14, 1900407(2020).

    [16] A HONARDOOST, K ABDELSALAM, S FATHPOUR. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser & Photonics Reviews, 14, 2000088(2020).

    [17] N I ZHELUDEV, E PLUM. Reconfigurable nanomechanical photonic metamaterials. Nature Nanotechnology, 11, 16-22(2016).

    [18] S C MALEK, H S EE, R AGARWAL. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Letters, 17, 3641-3645(2017).

    [19] H S EE, R AGARWAL. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 16, 2818-2823(2016).

    [20] E D PALIK. Handbook of optical constants of solids(1985).

    [21] Y W HUANG, H W LEE, R SOKHOYAN et al. Gate-tunable conducting oxide metasurfaces. Nano Letters, 16, 5319-5325(2016).

    [22] M ABB, P ALBELLA, J AIZPURUA et al. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Letters, 11, 2457-2463(2011).

    [23] M Z ALAM, I DE LEON, R W BOYD. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [24] E FEIGENBAUM, K DIEST, H A ATWATER. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Letters, 10, 2111-2116(2010).

    [25] F YI, E SHIM, A Y ZHU et al. Voltage tuning of plasmonic absorbers by indium tin oxide. Applied Physics Letters, 102, 221102(2013).

    [26] K THYAGARAJAN, R SOKHOYAN, L ZORNBERG et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance. Advanced Materials, 29, 1701044(2017).

    [27] J PARK, J H KANG, X LIU et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Scientific Reports, 5, 15754(2015).

    [28] J PARK, J H KANG, S J KIM et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Letters, 17, 407-413(2017).

    [29] G K SHIRMANESH, R SOKHOYAN, P C WU et al. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 14, 6912-6920(2020).

    [30] J PARK, B G JEONG, S I KIM et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nature Nanotechnology, 16, 69-76(2021).

    [31] G K SHIRMANESH, R SOKHOYAN, R A PALA et al. Dual-gated active metasurface at 1550 nm with wide (>300 degrees ) phase tunability. Nano Letters, 18, 2957-2963(2018).

    [32] A HOWES, W WANG, I KRAVCHENKO et al. Dynamic transmission control based on all-dielectric huygens metasurfaces. Optica, 5, 787-792(2018).

    [33] A P VASUDEV, J H KANG, J PARK et al. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Optics Express, 21, 26387-26397(2013).

    [34] L ZHAOLIN, Z WANGSHI, S KAIFENG. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics Journal, 4, 735-740(2012).

    [35] D GEORGE, L LI, D LOWELL et al. Electrically tunable diffraction efficiency from gratings in Al-doped ZnO. Applied Physics Letters, 110, 071110(2017).

    [36] M G WOOD, S CAMPIONE, S PARAMESWARAN et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5, 233-236(2018).

    [37] H ZHAO, R ZHANG, H T CHORSI et al. Gate-tunable metafilm absorber based on indium silicon oxide. Nanophotonics, 8, 1803-1810(2019).

    [38] C LIU, Y BAI, J ZHOU et al. A review of graphene plasmons and its combination with metasurface. Journal of the Korean Ceramic Society, 54, 349-365(2017).

    [39] L JU, B GENG, J HORNG et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6, 630-4(2011).

    [40] M C SHERROTT, P W C HON, K T FOUNTAINE et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Letters, 17, 3027-3034(2017).

    [41] N DABIDIAN, S DUTTA GUPTA, I KHOLMANOV et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces. Nano Letters, 16, 3607-3615(2016).

    [42] W GAO, J SHU, K REICHEL et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Letters, 14, 1242-1248(2014).

    [43] Y YAO, M A KATS, P GENEVET et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters, 13, 1257-1264(2013).

    [44] N K EMANI, T F CHUNG, X NI et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Letters, 12, 5202-5206(2012).

    [45] S H LEE, M CHOI, T T KIM et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials, 11, 936-941(2012).

    [46] B ZENG, Z HUANG, A SINGH et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light: Science & Applications, 7, 51(2018).

    [47] S KIM, M S JANG, V W BRAR et al. Electronically tunable perfect absorption in graphene. Nano Letters, 18, 971-979(2018).

    [48] S HAN, S KIM, S KIM et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules. ACS Nano, 14, 1166-1175(2020).

    [49] Z SUN, F HUANG, Y FU. Graphene-based active metasurface with more than 330° phase tunability operating at mid-infrared spectrum. Carbon, 173, 512-520(2021).

    [50] V W BRAR, M C SHERROTT, M S JANG et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nature Communications, 6, 7032(2015).

    [51] Z FANG, Y WANG, A E SCHLATHER et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Letters, 14, 299-304(2014).

    [52] Y YAO, R SHANKAR, M A KATS et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 14, 6526-6532(2014).

    [53] X ZHANG, N BIEKERT, S CHOI et al. Dynamic photochemical and optoelectronic control of photonic fano resonances via monolayer MoS2 trions. Nano Letters, 18, 957-963(2018).

    [54] B LEE, W LIU, C H NAYLOR et al. Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Letters, 17, 4541-4547(2017).

    [55] W LIU, Y WANG, B ZHENG et al. Observation and active control of a collective polariton mode and polaritonic band gap in few-layer WS2 strongly coupled with plasmonic lattices. Nano Letters, 20, 790-798(2020).

    [56] P NI, A DE LUNA BUGALLO, V M ARELLANO ARREOLA et al. Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS2-gap-mode metasurfaces. ACS Photonics, 6, 1594-1601(2019).

    [57] J GROEP, J-H SONG, U CELANO et al. Exciton resonance tuning of an atomically thin lens. Nature Photonics, 14, 426-430(2020).

    [58] H T CHEN, W J PADILLA, J M ZIDE et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [59] Y C JUN, E GONZALES, J L RENO et al. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Optics Express, 20, 1903-1911(2012).

    [60] W L CHAN, H T CHEN, A J TAYLOR et al. A spatial light modulator for terahertz beams. Applied Physics Letters, 94, 213511(2009).

    [61] J PARK, J H KANG, X LIU et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Science Advances, 4, eaat3163(2018).

    [62] P C WU, R A PALA, G KAFAIE SHIRMANESH et al. Dynamic beam steering with all-dielectric electro-optic Ⅲ-Ⅴ multiple-quantum-well metasurfaces. Nature Communications, 10, 3654(2019).

    [63] J LEE, S JUNG, P Y CHEN et al. Ultrafast electrically tunable polaritonic metasurfaces. Advanced Optical Materials, 2, 1057-1063(2014).

    [64] A BENZ, I MONTAñO, J F KLEM et al. Tunable metamaterials based on voltage controlled strong coupling. Applied Physics Letters, 103, 263116(2013).

    [65] D ANDRIENKO. Introduction to liquid crystals. Journal of Molecular Liquids, 267, 520-541(2018).

    [66] P A KOSSYREV, A YIN, S G CLOUTIER et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Letters, 5, 1978-1981(2005).

    [67] M DECKER, C KREMERS, A MINOVICH et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Optics Express, 21, 8879-8885(2013).

    [68] Y U LEE, J KIM, J H WOO et al. Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell. Optics Express, 22, 20816-20827(2014).

    [69] K P CHEN, S C YE, C Y YANG et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals. Optics Express, 24, 16815-16821(2016).

    [70] O BUCHNEV, J Y OU, M KACZMAREK et al. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Optics Express, 21, 1633-1638(2013).

    [71] O BUCHNEV, N PODOLIAK, M KACZMAREK et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Advanced Optical Materials, 3, 674-679(2015).

    [72] Z W XIE, J H YANG, V VASHISTHA et al. Liquid-crystal tunable color filters based on aluminum metasurfaces. Optics Express, 25, 30764-30770(2017).

    [73] A KOMAR, Z FANG, J BOHN et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Applied Physics Letters, 110, 071109(2017).

    [74] R WANG, S HE, S CHEN et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order poincare sphere. Optics Letters, 43, 3570-3573(2018).

    [75] M SUN, X XU, X W SUN et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Scientific Reports, 9, 8673(2019).

    [76] S Q LI, X XU, R M VEETIL et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [77] M BAZZAN, C SADA. Optical waveguides in lithium niobate: recent developments and applications. Applied Physics Reviews, 2, 040603(2015).

    [78] L HE, M ZHANG, A SHAMS-ANSARI et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics Letters, 44, 2314(2019).

    [79] I KRASNOKUTSKA, J TAMBASCO J-L, X LI et al. Ultra-low loss photonic circuits in lithium niobate on insulator. Optics Express, 26, 897(2018).

    [80] D ZHU, L SHAO, M YU et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 13, 242-352(2021).

    [81] A WEISS, C FRYDENDAHL, J BAR-DAVID et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics, 9, 605-612(2022).

    [82] H WEIGAND, V V VOGLER NEULING, M R ESCALé et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photonics, 8, 3004-3009(2021).

    [83] B GAO, M REN, W WU et al. Electro-optic lithium niobate metasurfaces. Science China Physics, Mechanics & Astronomy, 64, 240362(2021).

    [84] E KLOPFER, S DAGLI, D BARTON et al. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping. Nano Letters, 22, 1703-1709(2022).

    [85] X SUN, G LIU, H YU et al. Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer. Optics Express, 29, 9207-9216(2021).

    [86] C QIU, B WANG, N ZHANG et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature, 577, 350-354(2020).

    [87] X LIU, P TAN, X MA et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches. Science, 376, 371-377(2022).

    [88] W M ZHU, A Q LIU, X M ZHANG et al. Switchable magnetic metamaterials using micromachining processes. Advanced Materials, 23, 1792-1796(2011).

    [89] W M ZHU, A Q LIU, W ZHANG et al. Polarization dependent state to polarization independent state change in THz metamaterials. Applied Physics Letters, 99, 221102(2011).

    [90] J Y OU, E PLUM, J ZHANG et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology, 8, 252-255(2013).

    [91] Y S LIN, C LEE. Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers. Applied Physics Letters, 104, 251914(2014).

    [92] P PITCHAPPA, HO C PEI, P KROPELNICKI et al. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber. Applied Physics Letters, 104, 201114(2014).

    [93] A L HOLSTEEN, S RAZA, P FAN et al. Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science, 358, 1407-1410(2017).

    [94] Y MAO, Y PAN, W ZHANG et al. Multi-direction-tunable three-dimensional meta-atoms for reversible switching between midwave and long-wave infrared regimes. Nano Letters, 16, 7025-7029(2016).

    [95] A SHE, S ZHANG, S SHIAN et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances, 4, eaap9957(2018).

    [96] E ARBABI, A ARBABI, S M KAMALI et al. MEMS-tunable dielectric metasurface lens. Nature Communications, 9, 812(2018).

    [97] X ZHAO, J SCHALCH, J ZHANG et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica, 5, 303-310(2018).

    [98] M MANJAPPA, P PITCHAPPA, N SINGH et al. Reconfigurable MEMS fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies. Nature Communications, 9, 4056(2018).

    [99] A L HOLSTEEN, A F CIHAN, M L BRONGERSMA. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science, 365, 257-260(2019).

    [100] X ZHANG, K KWON, J HENRIKSSON et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature, 603, 253-258(2022).

    [101] L KAUL, R ZLOT, M BOSSE. Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated rotating laser scanner. Journal of Field Robotics, 33, 103-132(2016).

    [102] S ROYO, G M BALLESTA. An overview of lidar imaging systems for autonomous vehicles. Applied Sciences, 9, 4093(2019).

    [103] I KIM, R J MARTINS, J JANG et al. Nanophotonics for light detection and ranging technology. Nature Nanotechnology, 16, 508-524(2021).

    [104] D GAO, T LI, Y SUN et al. Latest developments and trends of space laser communication. Chinese Optics, 011, 901-913(2018).

    [105] W MA, Z LIU, Z A KUDYSHEV et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2020).

    [106] L LI, H ZHAO, C LIU et al. Intelligent metasurfaces: control, communication and computing. eLight, 2, 7(2022).

    [107] Q MA, W GAO, Q XIAO et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. eLight, 2, 11(2022).

    [108] R ZHU, J WANG, T QIU et al. Remotely mind-controlled metasurface via brainwaves. eLight, 2, 10(2022).

    Lei ZHANG, Yunfan XU, Bobo DU, Huimin DING, Xiaoyong WEI, Zhuo XU. Advances in Electrically Tunable Metasurfaces(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1026002
    Download Citation