• Frontiers of Optoelectronics
  • Vol. 6, Issue 4, 440 (2013)
[in Chinese]1、2, [in Chinese]2, [in Chinese]1、*, [in Chinese]1, and [in Chinese]2
Author Affiliations
  • 1Department of Physics, Jianghan University, Wuhan 430056, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-013-0350-x Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer[J]. Frontiers of Optoelectronics, 2013, 6(4): 440 Copy Citation Text show less
    References

    [1] Wang X D, Song J H, Liu J,Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102-105

    [2] Lee S W, Jeong M C, Myoung J M, Chae G S, Chung I J. Magnetic alignment of ZnO nanowires for optoelectronic device applications. Applied Physics Letters, 2007, 90(13): 133115

    [3] Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters, 2008, 8(5): 1501-1505

    [4] Lin M S, Chen C C,WangWC, Lin C F, Chang S Y. Fabrication of the selective-growth ZnO nanorods with a hole-array pattern on a ptype GaN:Mg layer through a chemical bath deposition process. Thin Solid Films, 2010, 518(24): 7398-7402

    [5] Xu S, Xu C, Liu Y, Hu Y F, Yang R S, Yang Q, Ryou J H, Kim H J, Lochner Z, Choi S, Dupuis R, Wang Z L. Ordered nanowire array blue/near-UV light emitting diodes. Advanced Materials, 2010, 22(42): 4749-4753

    [6] Ng H T, Han J, Yamada T, Nguyen P, Chen Y P, Meyyappan M. Single crystal nanowire vertical surround-gate field-effect transistor. Nano Letters, 2004, 4(7): 1247-1252

    [7] Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gosele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small, 2007, 3(1): 76-80

    [8] Hochbaum A I, Fan R, He R, Yang P. Controlled growth of Si nanowire arrays for device integration. Nano Letters, 2005, 5(3): 457-460

    [9] Dong J J, Zhang X W, Yin Z G, Zhang S G,Wang J X, Tan H R, Gao Y, Si F T, Gao H L. Controllable growth of highly ordered ZnO nanorod arrays via inverted self-assembled monolayer template. Applied Materials & Interfaces, 2011, 3(11): 4388-4395

    [10] Fan H J, Fuhrmann B, Scholz R, Syrowatka F, Dadgar A, Krost A, Zacharias M. Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. Journal of Crystal Growth, 2006, 287(1): 34-38

    [11] Zeng H B, Xu X J, Bando Y, Gautam U K, Zhai T Y, Fang X S, Liu B D, Golberg D. template deformation-tailored ZnO nanorod/nanowire arrays: full growth control and optimization of fieldemission. Advanced Functional Materials, 2009, 19(19): 3165-3172

    [12] Cheng C, Lei M, Feng L, Wong T L, Ho K M, Fung K K, Loy M M T, Yu D P, Wang N. High-quality ZnO nanowire arrays directly fabricated from photoresists. ACS Nano, 2009, 3(1): 53-58

    [13] Hong Y J, An S J, Jung H S, Lee C H, Yi G C. Position-controlled selective growth of ZnO nanorods on Si substrates using facetcontrolled GaN micropatterns. Advanced Materials, 2007, 19(24): 4416-4419

    [14] Hong Y J, Yoo J, Doh Y J, Kang S H, Kong K J, Kim M, Lee D R, Oh K H, Yi G C J. Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes. Materials Chemistry, 2009, 19(7): 941-947

    [15] Le H Q, Chua S J, Koh Y W, Loh K P, Chen Z, Thompson C V, Fitzgerald E A. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Applied Physics Letters, 2005, 87(10): 101908

    [16] Wei Y G,WuWZ, Guo R, Yuan D J, Das S,Wang Z L.Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Letters, 2010, 10(9): 3414-3419

    [17] Tay C B, Le H Q, Chua S J, Loh K P J. Empirical model for density and length prediction of ZnO nanorods on GaN using hydrothermal synthesis. Journal of the Electrochemical Society, 2007, 154(9): K45-K50

    [18] Le H Q, Chua S J, Koh Y W, Loh K P, Fitzgerald E A. Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis. Journal of Crystal Growth, 2006, 293(1): 36-42

    [19] Gao H Y, Yan F W, Li J M, Zeng Y P, Wang J X. Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaNbased LED epiwafer using a solution deposition method. Journal of Physics. D, Applied Physics, 2007, 40(12): 3654-3659

    [20] Zhou H L, Shao P G, Chua S J, Kan J A, Bettiol A A, Osipowicz T, Ooi K F, Goh G K L, Watt F. Selective growth of ZnO nanorod arrays on a GaN/sapphire substrate using a proton beam written mask. Crystal Growth & Design, 2008, 8(12): 4445-4448

    [21] Ye B U, Yu H, Kim M H, Lee J L, Baik J M. Modulating ZnO nanostructure arrays on any substrates by nanolevel structure control. Journal of Physical Chemistry C, 2011, 115(16): 7987-7992

    [22] Sun Y, Riley J, Ashfold M N R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. Journal of Physical Chemistry B, 2006, 110(31): 15186-15192

    [23] Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A, Jones K A. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Applied Physics Letters, 1998, 73(3): 348

    [24] Huang S Y, Yang J R. A Transmission electron microscopy observation of dislocations in GaN grown on (0001) sapphire by metal organic chemical vapor deposition. Japanese Journal of Applied Physics, 2008, 47(10): 7998-8002

    [25] Morin S A, Jin S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Letters, 2010, 10(9): 3459-3463

    [26] Ozgur U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H J. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98(4): 041301

    [27] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899

    [28] Zhang J, Sun L D, Liao C S, Yang C H. A simple route towards tubular ZnO. Chemical Communications (Cambridge), 2002, 3(3): 262-263

    [29] Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic Chemistry, 2003, 42(24): 8105-8109

    [30] Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and optical properties of uniform ZnO nanosheets. Advanced Materials, 2005, 17(5): 586-590

    [31] Zeng H, Duan G T, Li Y, Yang S K, Xu X X, Cai W P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Advanced Functional Materials, 2010, 20(4): 561-572

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer[J]. Frontiers of Optoelectronics, 2013, 6(4): 440
    Download Citation