• Chinese Optics Letters
  • Vol. 14, Issue 8, 081601 (2016)
Peiwen Kuan1、2, Xiaokang Fan3, Wentao Li1、2, Xueqiang Liu1、2, Chunlei Yu1, Lei Zhang1, and and Lili Hu1
Author Affiliations
  • 1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201 800, China
  • 2University of Chinese Academy of Sciences, Beijing 100039, China
  • 3Wuhan Optics Valley Aerospace Sanjiang Laser Industrial Technology Research Institute Co. Ltd., Wuhan 43 0000, China
  • show less
    DOI: 10.3788/col201614.081601 Cite this Article Set citation alerts
    Peiwen Kuan, Xiaokang Fan, Wentao Li, Xueqiang Liu, Chunlei Yu, Lei Zhang, and Lili Hu. High-efficiency ~2 μm laser in a single-mode Tm-doped lead germanate composite fiber[J]. Chinese Optics Letters, 2016, 14(8): 081601 Copy Citation Text show less
    References

    [1] J. Geng, Q. Wang, Y. W. Lee, and S. Jiang, IEEE J. Sel. Top. Quantum Electron. 20, 0904011 (2014).

    [2] K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics , PalB., (eds.) (Intech, 2010), pp. 471.

    [3] K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, Photon. Res. 3, 72 (2015).

    [4] P. Zhang, W. Ma, T. Wang, Q. Jia, and C. Wan, Chin. Opt. Lett. 12, 111403 (2014).

    [5] X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, Photon. Res. 2, 172 (2014).

    [6] J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 334 (2006).

    [7] B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, J. Non-Cryst. Solids 352, 5344 (2006).

    [8] B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).

    [9] F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, Chin. Opt. Lett. 12, 051601 (2014).

    [10] J. Wu, Z. Yao, J. Zong, and S. Jiang, Opt. Lett. 32, 638 (2007).

    [11] S. Gao, P.-W. Kuan, X. Liu, D. Chen, M. Liao, and L. Hu, IEEE Photon. Technol. Lett. 27, 1702 (2015).

    [12] X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, Opt. Express 23, 7722 (2015).

    [13] S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, J. Non-Cryst. Solids 159, 213 (1993).

    [14] R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, Opt. Mater. 28, 1253 (2006).

    [15] H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V, T. M. Monro, and H. Ebendorff-Heidepriem, Opt. Mater. Express 3, 1488 (2013).

    [16] J. R. Lincoln, C. J. Mackechnie, J. Wang, W. S. Brocklesby, R. S. Deol, A. Pearson, D. C. Hanna, and D. N. Payne, Electron. Lett. 28, 1021 (1992).

    [17] X. Fan, P. Kuan, K. Li, L. Zhang, W. Li, and L. Hu, Laser Phys. 24, 085107 (2014).

    [18] T. Xue, L. Zhang, L. Wen, M. Liao, and L. Hu, Chin. Opt. Lett. 13, 081602 (2015).

    [19] M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, J. Non-Cryst. Solids 351, 2388 (2005).

    [20] Y.-W. Lee, H.-Y. Ling, Y.-H. Lin, and S. Jiang, Opt. Mater. Express 5, 549 (2015).

    [21] J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, Opt. Mater. 24, 563 (2003).

    [22] D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chicklis, Opt. Lett. 39, 470 (2014).

    [23] E. Ji, Q. Liu, Z. Hu, P. Yan, and M. Gong, Chin. Opt. Lett. 13, 121402 (2015).

    [24] J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, Photon. Res. 3, 119 (2015).

    [25] J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, J. Appl. Phys. 73, 8066 (1993).

    CLP Journals

    [1] Xinsheng Guo, Qinghui Wu, Linyang Guo, Fengkai Ma, Fei Tang, Cheng Zhang, Jie Liu, Bingchu Mei, Liangbi Su. Highly efficient CW laser operation in 4 at. % Tm3+ and 4 at. % Y3+ codoped CaF2 crystals[J]. Chinese Optics Letters, 2018, 16(5): 051401

    [2] Fangwei Qi, Feifei Huang, Tao Wang, Ruoshan Lei, Junjie Zhang, Shiqing Xu, Long Zhang. Influence of Tm3+ ions on the amplification of Ho3+:5I75I8 transition in fluoride glass modified by Al(PO3)3 for applications in mid-infrared optics[J]. Chinese Optics Letters, 2017, 15(5): 051604

    Data from CrossRef

    [1] Rong Chen, Ying Tian, Bingpeng Li, Caizhi Wang, Xufeng Jing, Junjie Zhang, Shiqing Xu. Infrared fluorescence, energy transfer process and quantitative analysis of thulium-doped niobium silicate-germanate glass. Infrared Physics & Technology, 79, 191(2016).

    [2] Caizhi Wang, Ying Tian, Huanhuan Li, Qunhuo Liu, Feifei Huang, Bingpeng Li, Junjie Zhang, Shiqing Xu. Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+/Tm3+ co-doped tellurite glass. Infrared Physics & Technology, 85, 128(2017).

    [3] Feifei Huang, Yanyan Guo, Ying Tian, Shiqing Xu, Junjie Zhang. Intense 2.7 μm emission in Er 3+ doped zinc fluoride glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 42(2017).

    [4] Shaohua Fan, Shikai Wang, Hongtao Sun, Shiyu Sun, Guojun Gao, Lili Hu. Efficient dual-mode up-conversion and down-shifting emission in β-NaYF4 :Yb3+ ,Er3+ microcrystals via ion exchange. Journal of the American Ceramic Society, 100, 3061(2017).

    [5] Fangwei Qi, Feifei Huang, Tao Wang, Ying Tian, Ruoshan Lei, Renguang Ye, Junjie Zhang, Long Zhang, Shiqing Xu. Enhanced 3??μm luminescence properties based on effective energy transfer Yb^3+?:?^2F_5/2→Dy^3+?:?^6H_5/2 in fluoaluminate glass modified by TeO_2. Applied Optics, 56, H24(2017).

    [6] Guoying Zhao, Wentian Jin, Yongzheng Fang, Yubiao He, Yingjie Li, Yufeng Liu, Meisong Liao, Jun Zou. Comparative study of 27 μm emission of Ho^3+ desensitized Er^3+ in tellurite and bismuth glass. Optical Materials Express, 7, 1147(2017).

    [7] Qunhuo Liu, Ying Tian, Caizhi Wang, Feifei Huang, Xufeng Jing, Junjie Zhang, Xianghua Zhang, Shiqing Xu. Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments. Physical Chemistry Chemical Physics, 19, 29833(2017).

    [8] Tao Wang, Feifei Huang, Fangwei Qi, Ying Tian, Junjie Zhang, Shiqing Xu. Spectroscopic properties and energy transfer process in Tm 3+ -doped Silica-germanate glasses. Journal of Luminescence, 187, 205(2017).

    [9] Fangwei Qi, Feifei Huang, Ruoshan Lei, Ying Tian, Long Zhang, Junjie Zhang, Shiqing Xu. Emission properties of 1.8 and 2.3 μm in Tm3+-doped fluoride glass. Glass Physics and Chemistry, 43, 340(2017).

    [10] Qunhuo Liu, Ying Tian, Bingpeng Li, Caizhi Wang, Feifei Huang, Xufeng Jing, Junjie Zhang, Shiqing Xu. Broadband 2 μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass. Journal of Luminescence, 190, 76(2017).

    [11] Yayan Xu, Ying Tian, Qunhuo Liu, Xinrui Sheng, Wenhua Tang, Junjie Zhang, Shiqing Xu. Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics. Journal of Luminescence, 211, 418(2019).

    [12] Caizhi Wang, Ying Tian, Xinyu Gao, Qunhuo Liu, Feifei Huang, Bingpeng Li, Junjie Zhang, Shiqing Xu. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations. Optics Express, 25, 29512(2017).

    [13] Huanhuan Li, Zhaokun Wang, Can Li, Junjie Zhang, Shiqing Xu. Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber. Optics Express, 25, 26546(2017).

    Peiwen Kuan, Xiaokang Fan, Wentao Li, Xueqiang Liu, Chunlei Yu, Lei Zhang, and Lili Hu. High-efficiency ~2 μm laser in a single-mode Tm-doped lead germanate composite fiber[J]. Chinese Optics Letters, 2016, 14(8): 081601
    Download Citation