[1] CAHILL D G, BRAUN P V, CHEN G, et al. Nanoscale thermal transport. II. 2003-2012[J]. Appl Phys Rev, 2014, 1(1): 011305.
[2] KUMAR M, RANI S, SINGH Y, et al. Tuning the thermoelectric material's parameter: a comprehensive review[J]. J Nanosci Nanotechnol, 2020, 20(6): 3636-3646.
[3] LI N, REN J, WANG L, et al. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond[J]. Rev Mod Phys, 2012, 84(3): 1045-1066.
[4] ROBERTS N A, WALKER D. A review of thermal rectification observations and models in solid materials[J]. Int J Therm Sci, 2011, 50(5): 648-662.
[5] YANG N, ZHANG G, LI B. Thermal rectification in asymmetric graphene ribbons[J]. Appl Phys Lett, 2009, 95(3): 033107.
[6] WANG L, LI B. Thermal memory: a storage of phononic information[J]. Phys Rev Lett, 2008, 101(26): 267203.
[7] XIE R, BUI C T, VARGHESE B, et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams[J]. Adv Funct Mater, 2011, 21(9): 1602-1607.
[8] KUBYTSKYI V, BIEHS S A, BEN ABDALLAH P. Radiative bistability and thermal memory[J]. Phys Rev Lett, 2014, 113(7): 074301.
[9] NISHIKAWA K, YATSUGI K, KISHIDA Y, et al. Temperature-selective emitter[J]. Appl Phys Lett, 2019, 114(21): 211104.
[10] WANG Y S, LIU Z C, YE J J, et al. Thermal transport in molecular beam epitaxy grown Si1-xGex alloy films with a full spectrum of composition (x=0-1)[J]. J Appl Phys, 2019, 125(21): 215109.
[11] DI C, PAN J H, DONG S T, et al. Ultralow cross-plane lattice thermal conductivity caused by Bi-O/Bi-O interfaces in natural superlattice-like single crystals[J]. CrystEngComm, 2019, 21(41): 6261-6268.
[12] DI C, YU Y S, LUO Y C, et al. Ultralow lattice thermal conductivity of A0.5RhO2 (A=K, Rb, Cs) induced by interfacial scattering and resonant scattering[J]. J Phys Chem C, 2021, 125(21): 11648-11655.
[13] ZHANG Y Y, DI C, LV Y Y, et al. One-order decrease of thermal conductivity in nanostructured ZrTe5 and HfTe5 crystals[J]. Cryst Growth Des, 2019, 20(2): 680-687.
[14] CAO L, PAN J, ZHANG H, et al. One-order decreased lattice thermal conductivity of SnSe crystals by the introduction of nanometer SnSe2 secondary phase[J]. J Phys Chem C, 2019, 123(45): 27666-27671.
[16] LI Q, WEI J, SUN H, et al. Temperature dependent thermal conductivity and transition mechanism in amorphous and crystalline Sb2Te3 thin films[J]. Sci Rep, 2017, 7(1): 1-10.
[17] AMATO M, PALUMMO M, RURALI R, et al. Silicon-germanium nanowires: chemistry and physics in play, from basic principles to advanced applications[J]. Chem Rev, 2014, 114(2): 1371-1412.
[18] CHEAITO R, DUDA J C, BEECHEM T E, et al. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films[J]. Phys Rev Lett, 2012, 109(19): 195901.
[19] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater, 2007, 19(8): 1043-1053.
[20] LIAO M H, CHEN C H. The investigation of optimal Si-SiGe hetero-structure thin-film solar cell with theoretical calculation and quantitative analysis[J]. IEEE Trans Nanotechnol, 2011, 10(4): 770-773.
[21] CARRUTHERS J, GEBALLE T, ROSENBERG H, et al. The thermal conductivity of germanium and silicon between 2 and 300 K[J]. P Roy Soc A-Math Phy, 1957, 238(1215): 502-514.
[22] GLASSBRENNER C J, SLACK G A. Thermal conductivity of silicon and germanium from 3 K to the melting point[J]. Phys Rev, 1964, 134(4A): A1058.
[23] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
[24] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity[J]. J Materiomics, 2015, 1(2): 92-105.
[25] WAN C, WANG Y, WANG N, et al. Low-thermal-conductivity (MS)1+x(TiS2)2 (M= Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials[J]. Materials, 2010, 3(4): 2606-2617.
[26] BANIK A, BISWAS K. Synthetic nanosheets of natural van der waals heterostructures[J]. Angew Chem, 2017, 129(46): 14753-14758.
[27] SAMANTA M, GUIN S N, BISWAS K. Ultrathin few layer oxychalcogenide BiCuSeO nanosheets[J]. Inorg Chem Front, 2017, 4(1): 84-90.
[28] LI L, YAN X J, DONG S T, et al. Ultra-low thermal conductivities along c-axis of naturally misfit layered Bi2[AE]2Co2Oy (AE= Ca, Ca0.5Sr0.5, Sr, Ba) single crystals[J]. Appl Phys Lett, 2017, 111(3): 033902.
[29] CAHILL D G, WATSON S K, POHL R O. Lower limit to the thermal conductivity of disordered crystals[J]. Phys Rev B, 1992, 46(10): 6131-6140.
[30] VONESHEN D, REFSON K, BORISSENKO E, et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate[J]. Nat Mater, 2013, 12(11): 1028-1032.
[31] NIEDZIELA J L, BANSAL D, MAY A F, et al. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2[J]. Nat Phys, 2019, 15(1): 73-78.
[32] DAMAY F, PETIT S, ROLS S, et al. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2[J]. Sci Rep, 2016, 6: 23415.
[33] YING P, LI X, WANG Y, et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials[J]. Adv Funct Mater, 2017, 27(1): 1604145.
[34] LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics[J]. Nat Mater, 2012, 11(5): 422-425.
[35] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Phys Rev, 1959, 113(4): 1046.
[36] CALLAWAY J, VON BAEYER H C. Effect of point imperfections on lattice thermal conductivity[J]. Phys Rev, 1960, 120(4): 1149.
[37] YANG J, MORELLI D, MEISNER G, et al. Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites[J]. Phys Rev B, 2003, 67(16): 165207.
[38] HOODA M, YADAV C. Enhanced thermopower and low thermal conductivity in p-type polycrystalline ZrTe5[J]. Appl Phys Lett, 2017, 111(5): 053902.
[39] GUO J, HUANG Y, WU X, et al. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-type ZrTe5 nanoribbons[J]. Phys Status Solidi-R, 2019, 13(3): 1800529.
[40] ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[41] LI C W, HONG J, MAY A F, et al. Orbitally driven giant phonon anharmonicity in SnSe[J]. Nat Phys, 2015, 11(12): 1063-1069.
[42] JIN M, SHAO H, HU H, et al. Growth and characterization of large size undoped p-type SnSe single crystal by horizontal bridgman method[J]. J Alloy Compd, 2017, 712: 857-862.
[43] LEE Y K, AHN K, CHA J, et al. Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature[J]. J Amer Chem Soc, 2017, 139(31): 10887-10896.
[44] FU Y, XU J, LIU G Q, et al. Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation[J]. J Mater Chem C, 2016, 4(6): 1201-1207.
[45] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269): 141-144.
[46] PENG K, LU X, ZHAN H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy Environ Sci, 2016, 9(2): 454-460.
[47] JIN M, CHEN Z, TAN X, et al. Charge transport in thermoelectric SnSe single crystals [J]. ACS Energy Lett, 2018, 3(3): 689-694.
[48] ZHOU Y, LI W, WU M, et al. Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study[J]. Phys Rev B, 2018, 97(24): 245202.
[49] LI Z, XIAO C, FAN S, et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[J]. J Amer Chem Soc, 2015, 137(20): 6587-6593.
[50] MENG T, SUN Y, TONG C, et al. Solid-state thermal memory of temperature-responsive polymer induced by hydrogen bonds[J]. Nano Lett, 2021, 21(9): 3843-3848.