• Journal of Applied Optics
  • Vol. 43, Issue 4, 744 (2022)
Chang PENG1,1, Zile LI1,1,1,1, Zhixue HE1,1, and Guoxing ZHENG1,1,1,1,*
Author Affiliations
  • 11Electronic Information School, Wuhan University, Wuhan 430072, China
  • 12Department of Circuits and Systems, Peng Cheng Laboratory, Shenzhen 518055, China
  • show less
    DOI: 10.5768/JAO202243.0405001 Cite this Article
    Chang PENG, Zile LI, Zhixue HE, Guoxing ZHENG. Research progress of active metasurfaces based on liquid crystals[J]. Journal of Applied Optics, 2022, 43(4): 744 Copy Citation Text show less
    References

    [1] N YU, P GENEVET, MIKHAIL A KATS et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334, 333-337(2011).

    [2] M KHORASANINEJAD, A Y ZHU, C ROQUES-CARMES et al. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 16, 7229-7234(2016).

    [3] R J LIN, V-C SU, S WANG et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 14, 227-231(2019).

    [4] S WANG, P C WU, V C SU et al. Broadband achromatic optical metasurface devices. Nature Communications, 8, 187(2017).

    [5] [5]仇宫润, 赵峰, 王琨近红外超透镜的设计与制备应用光学202142061102110610.5768/JAO202142.0604002QIUGongrun, ZHAOFeng, WANGKunDesign and fabrication of near-infrared metalensJournal of Applied Optics202142061102110610.5768/JAO202142.0604002

    [6] X NI, A V KILDISHEV, V M SHALAEV. Metasurface holograms for visible light. Nature Communications, 4, 2807(2013).

    [7] G ZHENG, H MüHLENBERND, M KENNEY et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 10, 308-312(2015).

    [8] J DENG, L DENG, Z GUAN et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Letters, 20, 1830-1838(2020).

    [9] F YUE, C ZHANG, X F ZANG et al. High-resolution grayscale image hidden in a laser beam. Light: Science & Applications, 7, 17129(2018).

    [10] J DENG, Z LI, G ZHENG et al. Depth perception based 3D holograms enabled with polarization-independent metasurfaces. Optics Express, 26, 11843-11849(2018).

    [11] Q DAI, Z GUAN, S CHANG et al. A single-celled tri-functional metasurface enabled with triple manipulations of light. Advanced Functional Materials, 30, 2003990(2020).

    [12] S M KAMALI, E ARBABI, A ARBABI et al. Highly tunable elastic dielectric metasurface lenses. Laser & Photonics Reviews, 10, 1002-1008(2016).

    [13] C ZHANG, J JING, Y WU et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano, 14, 1418-1426(2020).

    [14] X ZHANG, Y ZHOU, H ZHENG et al. Reconfigurable metasurface for image processing. Nano Letters, 21, 8715-8722(2021).

    [15] S ABDOLLAHRAMEZANI, O HEMMATYAR, M TAGHINEJAD et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 13, 1696(2022).

    [16] L LU, Z DONG, F TIJIPTOHARSONO et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano, 15, 19722-19732(2021).

    [17] M M SALARY, H MOSALLAEI. Tunable all-dielectric metasurfaces for phase-only modulation of transmitted light based on quasi-bound states in the continuum. ACS Photonics, 7, 1813-1829(2020).

    [18] M Y SHALAGINOV, S AN, Y ZHANG et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 12, 1225(2021).

    [19] Y WU, W YANG, Y FAN et al. TiO2 metasurfaces: from visible planar photonics to photochemistry. Science Advances, 5, eaax0939(2019).

    [20] A LEITIS, A HEßLER, S WAHL et al. All-dielectric programmable huygens' metasurfaces. Advanced Functional Materials, 30, 1910259(2020).

    [21] C SHEN, J SUN, Y QI et al. Electrically tunable all-dielectric metasurfaces integrated with nematic liquid crystals for information encryption. IEEE Photonics Journal, 13, 1-5(2021).

    [22] C WAN, Z LI, S WAN et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Advanced Functional Materials, 32, 2110592(2022).

    [23] I KIM, M A ANSARI, M Q MEHMOOD et al. stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 32, 2004664(2020).

    [24] I KIM, W-S KIM, K KIM et al. Holographic metasurface gas sensors for instantaneous visual alarms. Science Advances, 7, eabe9943(2021).

    [25] Y HU, X OU, T ZENG et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Letters, 21, 4554-4562(2021).

    [26] I KIM, J JANG, G KIM et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nature Communications, 12, 3614(2021).

    [27] S ZHOU, Z SHEN, X LI et al. Liquid crystal integrated metalens with dynamic focusing property. Optics Letters, 45, 4324-4327(2020).

    [28] T BADLOE, I KIM, Y KIM et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Advanced Science, 8, 2102646(2021).

    [29] O BUCHNEV, J Y OU, M KACZMAREK et al. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Optics Express, 21, 1633-1638(2013).

    [30] M DECKER, C KREMERS, A MINOVICH et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Optics Express, 21, 8879-8885(2013).

    [31] H SU, H WANG, H ZHAO et al. Liquid-crystal-based electrically tuned electromagnetically induced transparency metasurface switch. Scientific Reports, 7, 17378(2017).

    [32] Z X SHEN, S H ZHOU, S J GE et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters, 114, 041106(2019).

    [33] Y LEE, M K PARK, S KIM et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 4, 1954-1966(2017).

    [34] Z W XIE, J H YANG, V VASHISTHA et al. Liquid-crystal tunable color filters based on aluminum metasurfaces. Optics Express, 25, 30764-30770(2017).

    [35] M SHARMA, N HENDLER, T ELLENBOGEN. Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform. Advanced Optical Materials, 8, 1901182(2020).

    [36] M SHARMA, T ELLENBOGEN. An all-optically controlled liquid-crystal plasmonic metasurface platform. Laser & Photonics Reviews, 14, 2000253(2020).

    [37] D XIAO, Y J LIU, S YIN et al. Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. Optics Express, 26, 25305-25314(2018).

    [38] S YIN, W JI, D XIAO et al. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces. Optics Communications, 448, 10-14(2019).

    [39] S YIN, D XIAO, J LIU et al. Reconfigurable chiral metasurface absorbers based on liquid crystals. IEEE Photonics Journal, 10, 1-9(2018).

    [40] A KOMAR, R PANIAGUA-DOMíNGUEZ, A MIROSHNICHENKO et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics, 5, 1742-1748(2018).

    [41] Y SHEN, Z SHEN, Y WANG et al. Electrically tunable terahertz focusing modulator enabled by liquid crystal integrated dielectric metasurface. Crystals, 11, 514(2021).

    [42] M BOSCH, M R SHCHERBAKOV, K WON et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Letters, 21, 3849-3856(2021).

    [43] H CHUNG, O D MILLER. Tunable metasurface inverse design for 80% switching efficiencies and 144° angular deflection. ACS Photonics, 7, 2236-2243(2020).

    [44] J LI, P YU, S ZHANG et al. Electrically-controlled digital metasurface device for light projection displays. Nature Communications, 11, 3574(2020).

    [45] P YU, J LI, N LIU. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Letters, 21, 6690-6695(2021).

    [46] Z X SHEN, S H ZHOU, X N LI et al. Liquid crystal integrated metalens with tunable chromatic aberration. Advanced Photonics, 2, 1-7(2020).

    [47] L DRIENCOURT, F FEDERSPIEL, D KAZAZIS et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics, 7, 444-453(2020).

    [48] Y JI, F FAN, X ZHANG et al. Active terahertz anisotropy and dispersion engineering based on dual-frequency liquid crystal and dielectric metasurface. Journal of Lightwave Technology, 38, 4030-4036(2020).

    [49] W DICKSON, G A WURTZ, P R EVANS et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Letters, 8, 281-286(2008).

    [50] V K S HSIAO, Y B ZHENG, B K JULURI et al. Light-driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Advanced Materials, 20, 3528-3532(2008).

    [51] B ATORF, H MüHLENBERND, M MULDARISNUR et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal. Optics Letters, 39, 1129-1132(2014).

    [52] J SAUTTER, I STAUDE, M DECKER et al. Active tuning of all-dielectric metasurfaces. ACS Nano, 9, 4308-4315(2015).

    [53] M PARRY, A KOMAR, B HOPKINS et al. Active tuning of high-Q dielectric metasurfaces. Applied Physics Letters, 111, 053102(2017).

    [54] W ZHAO, H JIANG, B LIU et al. Fano resonance based optical modulator reaching 85% modulation depth. Applied Physics Letters, 107, 171109(2015).

    [55] C X LIU, F YANG, X J FU et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Advanced Optical Materials, 9, 2100932(2021).

    [56] A KOMAR, Z FANG, J BOHN et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Applied Physics Letters, 110, 071109(2017).

    [57] C ZOU, A KOMAR, S FASOLD et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photonics, 6, 1533-1540(2019).

    [58] M SUN, X XU, X W SUN et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Scientific Reports, 9, 8673(2019).

    [59] S Q LI, X XU, VEETIL R MARUTHIYODAN et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [60] S ZHU, Z XU, H ZHANG et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption. Optics Express, 29, 9553-9564(2021).

    [61] R KOWERDZIEJ, M OLIFIERCZUK, J PARKA et al. Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal. Applied Physics Letters, 105, 022908(2014).

    [62] L WANG, S GE, W HU et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Optics Express, 25, 23873-23879(2017).

    [63] S ZHOU, Z SHEN, R KANG et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range. Applied Sciences, 8, 2211(2018).

    [64] J BOHN, T BUCHER, K E CHONG et al. Active tuning of spontaneous emission by mie-resonant dielectric metasurfaces. Nano Letters, 18, 3461-3465(2018).

    [65] D ROCCO, L CARLETTI, R CAPUTO et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Optics Express, 28, 12037-12046(2020).

    [66] J A DOLAN, H CAI, L DELALANDE et al. Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space. ACS Photonics, 8, 567-575(2021).

    [67] O BUCHNEV, N PODOLIAK, M KACZMAREK et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Advanced Optical Materials, 3, 674-679(2015).

    [68] J CHOU, L PARAMESWARAN, B KIMBALL et al. Electrically switchable diffractive waveplates with metasurface aligned liquid crystals. Optics Express, 24, 24265-24273(2016).

    [69] C ZOU, C AMAYA, S FASOLD et al. Multiresponsive dielectric metasurfaces. ACS Photonics, 8, 1775-1783(2021).

    Chang PENG, Zile LI, Zhixue HE, Guoxing ZHENG. Research progress of active metasurfaces based on liquid crystals[J]. Journal of Applied Optics, 2022, 43(4): 744
    Download Citation