Yingchao Du, Han Chen, Hongze Zhang, Qiang Gao, Qili Tian, Zhijun Chi, Zhi Zhang, Hao Zha, Jiaru Shi, Lixin Yan, Rui Qiu, Cheng Cheng, Taibin Du, Renkai Li, Huaibi Chen, Wenhui Huang, Chuanxiang Tang. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34(10): 104010

Search by keywords or author
- High Power Laser and Particle Beams
- Vol. 34, Issue 10, 104010 (2022)

Fig. 1. Schematic diagram of the very compact inverse Compton scattering gamma-ray source (VIGAS)

Fig. 2. Layout of the accelerator in VIGAS

Fig. 3. Relation between bunch length and emittance plus energy spread after optimization

Fig. 4. Pareto front of emittance and bunch length with 200 pC bunch charge and 500 pC bunch charge

Fig. 5. Beam dynamics simulation results in the case of 200 pC bunch charge

Fig. 6. Bunch energy and emittance versus the ratio of acceleration gradient

Fig. 7. Photon energy versus the ratio of acceleration gradient

Fig. 8. Block diagram of driving laser shaping design

Fig. 9. Block diagram of scattering laser design

Fig. 10. Simulated photon yield at different photon energy

Fig. 11. Photon bandwidth and the proportion within the collection angle versus the collection angle

Fig. 12. Photon spectroscopy within different collection angles using 800 nm scattering laser

Fig. 13. Photon spectroscopy within different collection angles using 400 nm scattering laser

Fig. 14. Photon spectroscopy in simulation taking jitter into consideration
|
Table 1. Performance parameters of VIGAS
|
Table 2. Parameters of electron beam in VIGAS
|
Table 3. Parameters of scattering laser in VIGAS
|
Table 4. Variable parameters in the optimization
|
Table 5. Optimized beam parameters with 200 pC bunch charge and 500 pC bunch charge
|
Table 6. Parameters of the driving laser system
|
Table 7. Parameter jitter range in the joint parameter sweep

Set citation alerts for the article
Please enter your email address