[1] GAUTAM S, BHATNAGAR D, BANSAL D, et al. Recent advancements in nanomaterials for biomedical implants[J]. Biomed Eng Adv, 2022, 3: 100029.
[2] BANSAL P, KATIYAR D, PRAKASH S, et al. Applications of some biopolymeric materials as medical implants: an overview[J]. Mater Today Proc, 2022, 65: 3377–3381.
[3] JIANG G Q, MISHLER D, DAVIS R, et al. Zirconia to Ti-6Al-4V braze joint for implantable biomedical device[J]. J Biomed Mater Res B Appl Biomater, 2005, 72(2): 316–321.
[4] LIN P P, LIN T S, HE P, et al. Microstructure evolution and mechanical properties of a vacuum-brazed Al2O3/Ti joint with Mo-coating on Al2O3 and Ti surfaces[J]. Ceram Int, 2019, 45(9): 11195–11203.
[5] BIAN H, LIU Y Q, SONG X G, et al. Diffusion bonding of implantable Al2O3/Ti–13Nb–13Zr joints: Interfacial microstructure and mechanical properties[J]. Mater Charact, 2022, 184: 111665.
[6] CHEN X K, BIAN H, SONG X G, et al. Effect of glucose contents on electrochemical corrosion behavior of Ti/ZrO2 brazing joint in SBF[J]. ACS Biomater Sci Eng, 2023, 9(3): 1332–1340.
[7] BIAN H, ZHOU Y X, SONG X G, et al. Reactive wetting and interfacial characterization of ZrO2 by SnAgCu–Ti alloy[J]. Ceram Int, 2019, 45(6): 6730–6737.
[8] ZHAO X L, NIINOMI M, NAKAI M, et al. Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants[J]. Mater Sci Eng C, 2011, 31(7): 1436–1444.
[9] NIINOMI M, HATTORI T, MORIKAWA K, et al. Development of low rigidity β-type titanium alloy for biomedical applications[J]. Mater Trans, 2002, 43(12): 2970–2977.
[10] ZHANG Y, CHEN Y K, YU D S, et al. A review paper on effect of the welding process of ceramics and metals[J]. J Mater Res Technol, 2020, 9(6): 16214–16236.
[11] SUI R, JU C Y, ZHONG W Q, et al. Improved wetting of Al2O3 by molten Sn with Ti addition at 973–1273 K[J]. J Alloys Compd, 2018, 739: 616–622.
[12] LEI Y Z, BIAN H, JANG N, et al. Low temperature brazing of biomedical titanium and zirconia metallized with Sn–Ti metal foil[J]. Mater Charact, 2022, 193: 112333.
[13] FU W, XUE Y D, DAI J H, et al. Insights into the adsorption and interfacial products improving the wetting of the Ag–Ti/graphite and Cu–Ti/graphite systems: A first-principles calculation[J]. Surf Interfaces, 2023, 38: 102840.
[14] NAIDICH Y V, ZHURAVLEV V S, GAB I I, et al. Liquid metal wettability and advanced ceramic brazing[J]. J Eur Ceram Soc, 2008, 28(4): 717–728.
[17] LEI Y Z, BIAN H, FU W, et al. Evaluation of biomedical Ti/ZrO2 joint brazed with pure Au filler: microstructure and mechanical properties[J]. Metals, 2020, 10(4): 526.
[20] LIN Q L, TAN K H, WANG L, et al. Wetting of YSZ by molten Sn–8Zr, Sn–4Zr–4Ti, and Sn–8Ti alloys at 800–900 ℃[J]. Ceram Int, 2022, 48(1): 373–380.
[21] DUROV A V, NAIDICH Y V, KOSTYUK B D. Investigation of interaction of metal melts and zirconia[J]. J Mater Sci, 2005, 40(9–10): 2173–2178.
[22] Gale W F, Totemeier T C. Smithells Metals Reference Book[M]. 8th Ed., Oxford: Butterworth-Heinemann, 2004: 11–427, 502, 505.
[24] ROSCOE R. The viscosity of suspensions of rigid spheres[J]. Br J Appl Phys, 1952, 3(8): 267–269.
[27] YIN F C, TEDENAC J C, GASCOIN F. Thermodynamic modelling of the Ti–Sn system and calculation of the Co–Ti–Sn system[J]. Calphad, 2007, 31(3): 370–379.
[28] SUI R, TAN K H, LIN Q L, et al. Wetting of substoichiometric YSZ2-x by molten Sn-based active alloys at 800–900 ℃[J]. Ceram Int, 2022, 48(20): 30621–30629.
[29] Barin I. Thermochemical Data of Pure Substances[M]. 3rd Ed., Weinheim: VCH Verlages Gesellschaft, 1995: 1880.
[30] RAJENDRAN S H, HWANG S J, JUNG J P. Active brazing of alumina and copper with multicomponent Ag–Cu–Sn–Zr–Ti filler[J]. Metals, 2021, 11(3): 509.