Single-shot ultrafast multidimensional optical imaging (UMOI) combines ultrahigh temporal resolution with multidimensional imaging capabilities in a snapshot, making it an essential tool for real-time detection and analysis of ultrafast scenes. However, current single-shot UMOI techniques cannot simultaneously capture the spatial-temporal-spectral complex amplitude information, hampering it from complete analyses of ultrafast scenes. To address this issue, we propose a single-shot spatial-temporal-spectral complex amplitude imaging (STS-CAI) technique using wavelength and time multiplexing. By employing precise modulation of a broadband pulse via an encoding plate in coherent diffraction imaging and spatial-temporal shearing through a wide-open-slit streak camera, dual-mode multiplexing image reconstruction of wavelength and time is achieved, which significantly enhances the efficiency of information acquisition. Experimentally, a custom-built STS-CAI apparatus precisely measures the spatiotemporal characteristics of picosecond spatiotemporally chirped and spatial vortex pulses, respectively. STS-CAI demonstrates both ultrahigh temporal resolution and robust phase sensitivity. Prospectively, this technique is valuable for spatiotemporal coupling measurements of large-aperture ultrashort pulses and offers promising applications in both fundamental research and applied sciences.