[1] 王保平, 罗乐. 芯片制造设备的价值评估:环境、挑战与推进策略: 以光刻机为例[J]. 国有资产管理, 2023(10): 56-61.WANGB P, LUOL. Value Evaluation of Chip Manufacturing Equipment: environment, Challenges and Promotion Strategies-taking mask aligner as an Example[J]. State Assets Management, 2023(10): 56-61.(in Chinese)
[2] 徐余恒, 薛亮. 全球芯片产业发展概览[J]. 上海人大月刊, 2023(10): 51-53.XUY H, XUEL. Overview of global chip industry development[J]. Shanghai Renda Monthly, 2023(10): 51-53.(in Chinese)
[3] 谭久彬. 超精密测量技术与仪器是高端制造发展的前提与基础[J]. 激光与光电子学进展, 2023, 60(3): 1-2. doi: 10.3788/LOP0312001TANJ B. Ultra-precision measurement technologies and instruments are the premise and foundation for the development of high-end manufacturing[J]. Laser & Optoelectronics Progress, 2023, 60(3): 1-2.(in Chinese). doi: 10.3788/LOP0312001
[4] SHIMIZU Y, CHEN L C, KIM D W et al. An insight into optical metrology in manufacturing[J]. Measurement Science and Technology, 32(2021).
[5] GAO W, KIM S W, BOSSE H et al. Measurement technologies for precision positioning[J]. CIRP Annals, 64, 773-796(2015).
[6] HU P C, CHANG D, TAN J B et al. Displacement measuring grating interferometer: a review[J]. Frontiers of Information Technology & Electronic Engineering, 20, 631-654(2019).
[8] YE Y, ZHANG C Y, HE C L et al. A review on applications of capacitive displacement sensing for capacitive proximity sensor[J]. IEEE Access, 8, 45325-45342(2020).
[9] 徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展, 2023, 60(3): 81-100. doi: 10.3788/LOP222694XUX, TANY D, MUH L, et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 2023, 60(3): 81-100.(in Chinese). doi: 10.3788/LOP222694
[10] 杨宏兴, 付海金, 胡鹏程, 等. 超精密高速激光干涉位移测量技术与仪器[J]. 激光与光电子学进展, 2022, 59(9): 295-309.YANGH X, FUH J, HUP CH, et al. Ultra-precision and high-speed laser interferometric displacement measurement technology and instrument[J]. Laser & Optoelectronics Progress, 2022, 59(9): 295-309.(in Chinese)
[11] YANG H X, LU Y F, HU P C et al. Measurement and control of the movable coil position of a joule balance with a system based on a laser heterodyne interferometer[J]. Measurement Science and Technology, 25(2014).
[12] WANG, H, PENG, K, LIU, X, et al, WANG, H, PENG, K, LIU, X, et al, WANG, H, PENG, K, LIU, X, et al, WANG, H, PENG, K, LIU, X, et al, WANG, H, PENG, K, LIU, X, et al, WANG, H, PENG, K, LIU, X, et al. (2020). Design and realization of a compact high-precision capacitive absolute angular position sensor based on time grating[J]. IEEE Transactions on Industrial Electronics, 68, 3548-3557.
[13] PENG K, DENG Z Z, LIU X K et al. Planar two-dimensional capacitive displacement sensor based on time grating[J]. IEEE Transactions on Industrial Electronics, 71, 4262-4272(2024).
[14] LAWALL J. Interferometry for accurate displacement metrology[J]. Optics and Photonics News, 15, 40-45(2004).
[15] WANG Y F, XU X, DAI Z R et al. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters[J]. PhotoniX, 3, 21(2022).
[16] ZENG Z L, QU X M, TAN Y D et al. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects[J]. Optics Express, 23, 16977-16983(2015).
[17] YU H Y, CHEN X L, LIU C J et al. A survey on the grating based optical position encoder[J]. Optics & Laser Technology, 143, 107352(2021).
[18] WANG S T, MA R, CAO F F et al. A review: high-precision angle measurement technologies[J]. Sensors, 24, 1755(2024).
[19] 朱俊豪, 汪盛通, 李星辉. 面向光刻机晶圆台的超精密光栅定位技术[J]. 激光与光电子学进展Laser & Optoelectronics Progress, 2022, 59(9): 0922019. doi: 10.3788/LOP202259.0922019ZHUJ H, WANGSH T, LIX H. Ultra-precision grating positioning technology for photolithography wafer stage[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922019.(in Chinese). doi: 10.3788/LOP202259.0922019
[20] KIMURA A, GAO W, KIM W et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 36, 576-585(2012).
[21] GAO W, KIMURA A. A three-axis displacement sensor with nanometric resolution[J]. CIRP Annals, 56, 529-532(2007).
[22] LEE J Y, CHEN H Y, HSU C C et al. Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution[J]. Sensors and Actuators A: Physical, 137, 185-191(2007).
[23] DE VINE G, RABELING D S, SLAGMOLEN B J J et al. Picometer level displacement metrology with digitally enhanced heterodyne interferometry[J]. Optics Express, 17, 828-837(2009).
[24] YANG H X, YIN Z Q, YANG R T et al. Design for A highly stable laser source based on the error model of high-speed high-resolution heterodyne interferometers[J]. Sensors, 20, 1083(2020).
[25] Heidenhain[webpage]. https://www.heidenhain.com/
[26] Magnescale[webpage]. https://www.magnescale.com/zh/
[31] Magnescale SQ[webpage], 47-57. https://www.magnescale.com/zh/products/sq47-57/
[32] Magnescale RS97[webpage]. https://www.magnescale.com/zh/products/rs97/
[33] TEIMEL A. Technology and applications of grating interferometers in high-precision measurement[J]. Precision Engineering, 14, 147-154(1992).
[34] 孔令雯, 蔡文魁, 施立恒, 等. 基于利特罗式激光反馈光栅干涉的微位移测量技术[J]. 中国激光, 2019, 46(4): 0404012. doi: 10.3788/cjl201946.0404012KONGL W, CAIW K, SHIL H, et al. Micro-displacement measurement technology based on littrow-configured laser feedback grating interference[J]. Chinese Journal of Lasers, 2019, 46(4): 0404012.(in Chinese). doi: 10.3788/cjl201946.0404012
[35] SHI Y P, ZHOU Q, LI X H et al. Design and testing of a linear encoder capable of measuring absolute distance[J]. Sensors and Actuators A: Physical, 308, 111935(2020).
[36] 夏豪杰. 高精度二维平面光栅测量系统及关键技术研究[D]. 合肥: 合肥工业大学, 2006.XIAH J. Research on Precise 2-D Plane Grating Measurement System and Key Technology[D].Hefei: Hefei University of Technology, 2006. (in Chinese)
[37] KIMURA A, WEI G, ARAI Y et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 34, 145-155(2010).
[38] KIMURA A, WEI G, ZENG L J. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder[J]. Measurement Science and Technology, 21(2010).
[39] KIMURA A, HOSONO K, KIM W et al. A two-degree-of-freedom linear encoder with a mosaic scale grating[J]. International Journal of Nanomanufacturing, 7, 73-91(2011).
[40] LI X H, WANG H H, NI K et al. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating[J]. Optics Express, 24, 21378-21391(2016).
[41] SHI Y P, NI K, LI X H et al. Highly accurate, absolute optical encoder using a hybrid-positioning method[J]. Optics Letters, 44, 5258-5261(2019).
[42] GAO W, SAITO Y, MUTO H et al. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 60, 515-518(2011).
[43] SHIMIZU Y, ITO T, LI X H et al. Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating[J]. Measurement Science and Technology, 25(2014).
[44] LIN J, GUAN J, WEN F et al. High-resolution and wide range displacement measurement based on planar grating[J]. Optics Communications, 404, 132-138(2017).
[45] WANG S T, LIAO B Q, SHI N N et al. A compact and high-precision three-degree-of-freedom grating encoder based on a quadrangular frustum pyramid prism[J]. Sensors, 23, 4022(2023).
[46] WANG S T, ZHU J H, SHI N N et al. Modeling and test of an absolute four-degree-of-freedom (DOF) grating encoder[C], 12319, 72-78(2022).
[47] LUO L B, GAO L Y, WANG S T et al. An ultra-precision error estimation for a multi-axes grating encoder using quadrant photodetectors[C], 12319, 57-65(2022).
[48] SAITO Y, ARAI Y, GAO W. Detection of three-axis angles by an optical sensor[J]. Sensors and Actuators A: Physical, 150, 175-183(2009).
[49] LEE C, KIM G H, LEE S K. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage[J]. Measurement Science and Technology, 22, 105901(2011).
[50] LEE C B, KIM G H, LEE S K. Uncertainty investigation of grating interferometry in six degree-of-freedom motion error measurements[J]. International Journal of Precision Engineering and Manufacturing, 13, 1509-1515(2012).
[51] LI X H, GAO W, MUTO H et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 37, 771-781(2013).
[52] LI X H, SHIMIZU Y, ITO T et al. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder[J]. Optical Engineering, 53, 122405-122405(2014).
[53] YU K N, ZHU J H, YUAN W H et al. Two-channel six degrees of freedom grating-encoder for precision-positioning of sub-components in synthetic-aperture optics[J]. Optics Express, 29, 21113-21128(2021).
[54] WANG S T, LUO L B, ZHU J H et al. An ultra-precision absolute-type multi-degree-of-freedom grating encoder[J]. Sensors, 22, 9047(2022).
[55] 喻晓, 吕梦洁, 张旭, 等. 基于铷原子调制转移光谱技术的1560nm光纤激光器频率锁定研究[J]. 中国激光, 2022, 49(3): 0301002. doi: 10.3788/CJL202249.0301002YUX, LÜM J, ZHANGX, et al. Research on frequency locking of 1560nm fiber laser based on rubidium atomic modulation transfer spectroscopy technology[J]. Chinese Journal of Lasers, 2022, 49(3): 0301002.(in Chinese). doi: 10.3788/CJL202249.0301002
[56] HSIEH H L, LEE J Y, WU W T et al. Quasi-common-optical-path heterodyne grating interferometer for displacement measurement[J]. Measurement Science and Technology, 21, 115304(2010).
[57] 王磊杰, 张鸣, 朱煜, 等. 超精密外差利特罗式光栅干涉仪位移测量系统[J]. 光学 精密工程, 2017, 25(12): 2975. doi: 10.3788/ope.20172512.2975WANGL J, ZHANGM, ZHUY, et al. A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Opt. Precision Eng., 2017, 25(12): 2975-2985.(in Chinese). doi: 10.3788/ope.20172512.2975
[58] HSU C C, WU C C, LEE J Y et al. Reflection type heterodyne grating interferometry for in-plane displacement measurement[J]. Optics Communications, 281, 2582-2589(2008).
[59] WANG L J, ZHANG M, ZHU Y et al. A novel heterodyne grating interferometer system for in-plane and out-of-plane displacement measurement with nanometer resolution[C], 173-177(2014).
[60] LIN C B, YAN S H, DU Z G et al. High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications, 339, 86-93(2015).
[61] YANG F Z, ZHANG M, ZHU Y et al. Two degree-of-freedom fiber-coupled heterodyne grating interferometer with milli-radian operating range of rotation[J]. Sensors, 19, 3219(2019).
[62] YIN Y F, LIU Z W, JIANG S et al. High-precision 2D grating displacement measurement system based on double-spatial heterodyne optical path interleaving[J]. Optics and Lasers in Engineering, 158, 107167(2022).
[63] HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics, 52, 6840-6848(2013).
[64] 林杰, 关健, 金鹏,等. 一种使用双频激光的三维光栅位移测量系统: CN103644848A[P]. doi: 10.1117/12.2082475LINJ, GUANJ, JINP, et al. A three-dimensional grating displacement measurement system using dual-frequency laser: CN103644848A [P]. (in Chinese). doi: 10.1117/12.2082475
[65] 谭久彬, 陆振刚, 魏培培. 一种使用双频激光和衍射光栅的三维位移测量装置: CN104567695A[P].TANJ B, LUZH G, WEIP P. A three-dimensional displacement measurement device using dual-frequency laser and diffraction grating: CN104567695A [P].(in Chinese)
[66] ZHU J H, WANG G C, WANG S T et al. A reflective-type heterodyne grating interferometer for three-degree-of-freedom subnanometer measurement[J]. IEEE Transactions on Instrumentation Measurement, 71, 3213005(2022).
[67] PAN S W, HSIEH H L, WANG W C. 6-DOF displacement and angle measurements using heterodyne laser encoder[C], 8819, 38-45(2013).
[68] HSIEH H L, PAN S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 23, 2451-2465(2015).
[69] WEICHERT C, KÖCHERT P, KÖNING R et al. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm[J]. Measurement Science and Technology, 23(2012).
[70] YE W N, ZHANG M, ZHU Y et al. Ultraprecision real-time displacements calculation algorithm for the grating interferometer system[J]. Sensors, 19, 2409(2019).
[71] KANG H J, CHUN B J, JANG Y S et al. Real-time compensation of the refractive index of air in distance measurement[J]. Optics Express, 23, 26377-26385(2015).
[72] LIU H W, XIANG H, CHEN J H et al. Measurement and compensation of machine tool geometry error based on Abbe principle[J]. The International Journal of Advanced Manufacturing Technology, 98, 2769-2774(2018).
[73] CHEN G H, ZHANG L, WANG X J et al. Modeling method of CNC tooling volumetric error under consideration of Abbé error[J]. The International Journal of Advanced Manufacturing Technology, 119, 7875-7887(2022).
[74] XUE G P, LU H O, LI X H et al. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd’s mirrors based interference lithography[J]. Optics Express, 28, 2179-2191(2020).
[75] LI X H, GAO W, SHIMIZU Y et al. A two-axis Lloyd’s mirror interferometer for fabrication of two-dimensional diffraction gratings[J]. CIRP Annals, 63, 461-464(2014).
[76] LI X H, SHIMIZU Y, ITO S et al. Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes[J]. International Journal of Precision Engineering and Manufacturing, 14, 1979-1988(2013).
[77] LI X H, NI K, ZHOU Q et al. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method[J]. Optics Express, 24, 10759-10766(2016).
[78] LI X H, LU H O, ZHOU Q et al. An orthogonal type two-axis lloyd’s mirror for holographic fabrication of two-dimensional planar scale gratings with large area[J]. Applied Sciences, 8, 2283(2018).
[79] MA D H, ZHAO Y X, ZENG L J. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment[J]. Scientific Reports, 7, 926(2017).
[80] GAO W, KIMURA A. A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating[J]. CIRP Annals, 59, 505-508(2010).
[81] QUAN L E, SHIMIZU Y, SATO R et al. Design and testing of a compact optical angle sensor for pitch deviation measurement of a scale grating with a small angle of diffraction[J]. International Journal of Automation Technology, 16, 572-581(2022).
[82] LI X H, SHI Y P, XIAO X et al. Design and testing of a compact optical prism module for multi-degree-of-freedom grating interferometry application[J]. Applied Sciences, 8, 2495(2018).
[83] XIONG X, YIN C G, QUAN L et al. Self-calibration of a large-scale variable-line-spacing grating for an absolute optical encoder by differencing spatially shifted phase maps from a fizeau interferometer[J]. Sensors, 22, 9348(2022).
[84] JOO K N, CLARK E, ZHANG Y Q et al. A compact high-precision periodic-error-free heterodyne interferometer[J]. Journal of the Optical Society of America A, 37(2020).
[85] HU P C, BAI Y, ZHAO J L et al. Toward a nonlinearity model for a heterodyne interferometer: not based on double-frequency mixing[J]. Optics Express, 23, 25935-25941(2015).
[86] FU H J, WANG Y, HU P C et al. Nonlinear errors resulting from ghost reflection and its coupling with optical mixing in heterodyne laser interferometers[J]. Sensors, 18, 758(2018).
[87] XING X, CHANG D, HU P C et al. Spatially separated heterodyne grating interferometer for eliminating periodic nonlinear errors[J]. Optics Express, 25, 31384-31393(2017).
[88] CHANG D, XING X, HU P C et al. Double-diffracted spatially separated heterodyne grating interferometer and analysis on its alignment tolerance[J]. Applied Sciences, 9, 263(2019).
[89] WANG G C, GAO L Y, HUANG G Y et al. A wavelength-stabilized and quasi-common-path heterodyne grating interferometer with sub-nanometer precision[J]. IEEE Transactions on Instrumentation and Measurement, 73, 1-9(2024).
[90] FU H J, JI R D, HU P C et al. Measurement method for nonlinearity in heterodyne laser interferometers based on double-channel quadrature demodulation[J]. Sensors, 18, 2768(2018).
[91] DE JONG F, VAN DER PASCH B, CASTENMILLER T et al. Enabling the lithography roadmap: an immersion tool based on a novel stage positioning system[C], 7274, 608-617(2009).
[92] CASTENMILLER T, VAN DE MAST F, DE KORT T et al. Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform[C], 7640, 623-634(2010).
[93] YE W N, ZHANG M, ZHU Y et al. Translational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner[J]. Optics Express, 26, 34734-34752(2018).
[94] MATSUKUMA H, ISHIZUKA R, FURUTA M et al. Reduction in cross-talk errors in a six-degree-of-freedom surface encoder[J]. Nanomanufacturing and Metrology, 2, 111-123(2019).
[95] CHANG D, YIN Z Q, SUN Y K et al. Spatially separated heterodyne grating interferometer for In-plane and out-of-plane displacement measurements[J]. Photonics, 9, 830(2022).
[96] HONG Y F, SATO R, SHIMIZU Y et al. Reduction of crosstalk errors in a surface encoder having a long Z-directional measuring range[J]. Sensors, 22, 9563(2022).
[97] HAN Y D, NI K, LI X H et al. An FPGA platform for next-generation grating encoders[J]. Sensors, 20, 2266(2020).
[98] YE W N, ZHANG M, ZHU Y et al. Real-time displacement calculation and offline geometric calibration of the grating interferometer system for ultra-precision wafer stage measurement[J]. Precision Engineering, 60, 413-420(2019).
[99] KIM H S, SCHMITZ T L, BECKWITH J F et al. A new heterodyne interferometer with zero periodic error and tunable beat frequency[J]. Proc. 23rd American Society of Precision Engineering (ASPE)(Portland, Oregon)(2008).
[100] PISANI M, YACOOT A, BALLING P et al. Comparison of the performance of the next generation of optical interferometers[J]. Metrologia, 49, 455-467(2012).
[101] GUAN J, KÖCHERT P, WEICHERT C et al. A differential interferometric heterodyne encoder with 30 picometer periodic nonlinearity and sub-nanometer stability[J]. Precision Engineering, 50, 114-118(2017).
[102] ZHU J H, WANG G C, XUE G P et al. Heterodyne three-degree-of-freedom grating interferometer for ultra-precision positioning of lithography machine[C], 12282, 21-32(2022).
[103] HSU C C. The Applications of the Heterodyne Interferoemetry[M]. Interferometry-Research and Applications in Science and Technology. IntechOpen, 31-64(2012).
[104] KUNZMANN H, PFEIFER T, FLÜGGE J. Scales
[105] LIN C B, YAN S H, DING D et al. Two-dimensional diagonal-based heterodyne grating interferometer with enhanced signal-to-noise ratio and optical subdivision[J]. Optical Engineering, 57(2018).
[106] KAZIEVA T V, GUBSKIY K L, KUZNETSOV A P et al. 3D push-pull heterodyne interferometer for SPM metrology[J]. Applied Optics, 58, 4000-4006(2019).
[107] LOU Y T, LI Z Y, YAN L P et al. A phase differential heterodyne interferometer for simultaneous measurement of straightness error and displacement[J]. Optics Communications, 497, 127195(2021).
[108] BADAMI V, DE GROOT P. Displacement measuring interferometry[J]. Handbook of optical dimensional metrology, 4(2013).