• Acta Physica Sinica
  • Vol. 68, Issue 4, 048102-1 (2019)
Hui Fang1, Hua Xue1, Qian-Yu Tang1, Qing-Yu Zhang1, Shi-Yan Pan2, and Ming-Fang Zhu1、*
Author Affiliations
  • 1Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
  • 2School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.7498/aps.68.20181587 Cite this Article
    Hui Fang, Hua Xue, Qian-Yu Tang, Qing-Yu Zhang, Shi-Yan Pan, Ming-Fang Zhu. Cellular automaton simulation of molten pool migration due to temperature gradient zone melting[J]. Acta Physica Sinica, 2019, 68(4): 048102-1 Copy Citation Text show less
    Comparison of the CA simulation with the analytical prediction[15]regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at , and G = 12°C/mm.SCN–0.3 wt.% ACE合金在()和G = 12°C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较
    Fig. 1. Comparison of the CA simulation with the analytical prediction[15]regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at , and G = 12°C/mm. SCN–0.3 wt.% ACE合金在 ( )和G = 12°C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较
    Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at , and G = 12°C/mm.SCN–0.3 wt.%ACE合金在()和G = 12 °C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较
    Fig. 2. Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at , and G = 12°C/mm. SCN–0.3 wt.%ACE合金在 ( )和G = 12 °C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较
    Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at , and G = 12 °C/mm.SCN–0.3 wt.% ACE合金在()和G = 12 °C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较
    Fig. 3. Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at , and G = 12 °C/mm. SCN–0.3 wt.% ACE合金在 ( )和G = 12 °C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较
    Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at , and G = 12°C/mm.SCN–0.3 wt.%ACE合金在()和G = 12°C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较
    Fig. 4. Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at , and G = 12°C/mm. SCN–0.3 wt.%ACE合金在 ( )和G = 12°C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较
    Comparison of the CA simulations with the analytical predictions [15] regarding the times required for a liquid pool to reach (a) the moving liquidus from at Vp Vp, cr and (b) the moving solidus from at Vp > Vp, cr as a function of the pulling velocity for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm.SCN–0.3 wt.% ACE合金在G = 12 °C/mm条件下, (a) Vp Vp, cr时熔池从初始位置()迁移到移动的液相线所需时间tl和(b) Vp > Vp, cr情况下熔池从初始位置()迁移到移动的固相线所需时间ts随抽拉速度变化的CA模拟与解析模型[15]预测结果的比较
    Fig. 5. Comparison of the CA simulations with the analytical predictions [15] regarding the times required for a liquid pool to reach (a) the moving liquidus from at Vp < Vp, cr and (b) the moving solidus from at Vp > Vp, cr as a function of the pulling velocity for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm. SCN–0.3 wt.% ACE合金在G = 12 °C/mm条件下, (a) Vp < Vp, cr时熔池从初始位置( )迁移到移动的液相线所需时间tl和(b) Vp > Vp, cr情况下熔池从初始位置( )迁移到移动的固相线所需时间ts随抽拉速度变化的CA模拟与解析模型[15]预测结果的比较
    Simulated sequence of liquid pool migration for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm, corresponding to = 0.5: (a) 2 s; (b) 20 s; (c) 37 s. The dimensionless initial positions of the five liquid pools are = 0.08, 0.3, 0.5, 0.6 and 0.75, respectively. is the dimensionless droplet position, y is the droplet position.CA模拟的SCN–0.3 wt.% ACE合金在Vp = 和G = 12°C/mm的条件下 (相应的临界位置= 0.5), 5个不同初始位置的熔池的迁移演化过程 (a) 2 s; (b) 20 s; (c) 37 s. 5个熔池的无量纲初始位置分别为= 0.08, 0.3, 0.5, 0.6和0.75. 为无量纲液滴位置, y为液滴位置
    Fig. 6. Simulated sequence of liquid pool migration for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm, corresponding to = 0.5: (a) 2 s; (b) 20 s; (c) 37 s. The dimensionless initial positions of the five liquid pools are = 0.08, 0.3, 0.5, 0.6 and 0.75, respectively. is the dimensionless droplet position, y is the droplet position. CA模拟的SCN–0.3 wt.% ACE合金在Vp = 和G = 12°C/mm的条件下 (相应的临界位置 = 0.5), 5个不同初始位置的熔池的迁移演化过程 (a) 2 s; (b) 20 s; (c) 37 s. 5个熔池的无量纲初始位置分别为 = 0.08, 0.3, 0.5, 0.6和0.75. 为无量纲液滴位置, y为液滴位置
    CA simulated average migrating velocity as a function of the dimensionless initial liquid pool position for a SCN–0.3 wt.% ACE alloy at G = 12°C/mm and Vp = 2.89 m/s, corresponding to = 0.5.CA模拟的SCN–0.3 wt.% ACE合金在Vp = 2.89 m/s和G = 12°C/mm条件下(相应的临界位置= 0.5), 平均迁移速度随无量纲初始熔池位置的变化
    Fig. 7. CA simulated average migrating velocity as a function of the dimensionless initial liquid pool position for a SCN–0.3 wt.% ACE alloy at G = 12°C/mm and Vp = 2.89 m/s, corresponding to = 0.5. CA模拟的SCN–0.3 wt.% ACE合金在Vp = 2.89 m/s和G = 12°C/mm条件下(相应的临界位置 = 0.5), 平均迁移速度随无量纲初始熔池位置的变化
    CA simulated time evolution of liquid pool velocity for a SCN–0.3 wt.% ACE alloy at different temperature gradients and (a) , = 0.3, Vp Vp, cr; (b) , = 0.7, Vp > Vp, cr.CA模拟的SCN–0.3 wt.% ACE合金在不同温度梯度条件下, 熔池迁移速度随时间的变化 (a) , = 0.3, Vp Vp, cr; (b) , = 0.7, Vp > Vp, cr
    Fig. 8. CA simulated time evolution of liquid pool velocity for a SCN–0.3 wt.% ACE alloy at different temperature gradients and (a) , = 0.3, Vp < Vp, cr; (b) , = 0.7, Vp > Vp, cr. CA模拟的SCN–0.3 wt.% ACE合金在不同温度梯度条件下, 熔池迁移速度随时间的变化 (a) , = 0.3, Vp < Vp, cr; (b) , = 0.7, Vp > Vp, cr
    CA simulated time evolution of liquid pool velocity for SCN-ACE alloys at G = 14°C/mm, different compositions and (a) , = 0.4, Vp Vp, cr; (b) , = 0.7, Vp > Vp, cr.CA模拟的不同成分SCN–ACE合金熔池在G = 14°C/mm时迁移速度随时间的变化 (a) , = 0.4, Vp Vp, cr; (b) , = 0.7, Vp > Vp, cr
    Fig. 9. CA simulated time evolution of liquid pool velocity for SCN-ACE alloys at G = 14°C/mm, different compositions and (a) , = 0.4, Vp < Vp, cr; (b) , = 0.7, Vp > Vp, cr. CA模拟的不同成分SCN–ACE合金熔池在G = 14°C/mm时迁移速度随时间的变化 (a) , = 0.4, Vp < Vp, cr; (b) , = 0.7, Vp > Vp, cr
    符号物理意义数值
    Dl/m2·s–1溶质在液相中的扩散系数1 × 10–9
    k平衡分配系数0.1
    ml/K·(wt.%)–1液相线斜率–2.8
    Tm/°C 纯SCN的熔点58.081
    Table 1.

    The physical parameters used in the present work[15,28].

    本文工作采用的物性参数[15,28]

    Hui Fang, Hua Xue, Qian-Yu Tang, Qing-Yu Zhang, Shi-Yan Pan, Ming-Fang Zhu. Cellular automaton simulation of molten pool migration due to temperature gradient zone melting[J]. Acta Physica Sinica, 2019, 68(4): 048102-1
    Download Citation