• Chinese Journal of Lasers
  • Vol. 49, Issue 4, 0405003 (2022)
Dongyan Zou, Hao Xiong, Zheqiang Zhong, and Bin Zhang*
Author Affiliations
  • College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • show less
    DOI: 10.3788/CJL202249.0405003 Cite this Article Set citation alerts
    Dongyan Zou, Hao Xiong, Zheqiang Zhong, Bin Zhang. Ultrafast Beam Smoothing Scheme Based on Rotation Arrangement of Phase Plates[J]. Chinese Journal of Lasers, 2022, 49(4): 0405003 Copy Citation Text show less
    References

    [1] Lindl J D, Amendt P, Berger R L et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [2] Moses E I. Ignition on the National Ignition Facility: a path towards inertial fusion energy[J]. Nuclear Fusion, 49, 104022(2009).

    [3] Spaeth M L, Manes K R, Kalantar D H et al. Description of the NIF laser[J]. Fusion Science and Technology, 69, 25-145(2016).

    [4] Rose H A, DuBois D F. Statistical properties of laser hot spots produced by a random phase plate[J]. Physics of Fluids B: Plasma Physics, 5, 590-596(1993).

    [5] Marozas J A. Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. Journal of the Optical Society of America A, 24, 74-83(2007).

    [6] Deng X M, Liang X C, Chen Z Z et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 25, 377-381(1986).

    [7] Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Optics Communications, 46, 27-31(1983).

    [8] Jiang Y E, Li X C, Zhou S L et al. Microwave resonant electro-optic bulk phase modulator for two-dimensional smoothing by spectral dispersion in SG-II[J]. Chinese Optics Letters, 11, 052301(2013).

    [9] Boehly T R, Smalyuk V A, Meyerhofer D D et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser[J]. Journal of Applied Physics, 85, 3444-3447(1999).

    [10] Munro D H, Dixit S N, Langdon A B et al. Polarization smoothing in a convergent beam[J]. Applied Optics, 43, 6639-6647(2004).

    [11] Néauport J, Ribeyre X, Daurios J et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Applied Optics, 42, 2377-2382(2003).

    [12] Williams E A. On the control of filamentation of intense laser beams propagating in underdense plasma[J]. Physics of Plasmas, 13, 056310(2006).

    [13] Desselberger M, Willi O. Measurement and analysis of Rayleigh-Taylor instability in targets driven by incoherent laser radiation[J]. Physics of Fluids B: Plasma Physics, 5, 896-909(1993).

    [14] Rothenberg J E, Auerbach J M, Moran B D et al. Implementation of smoothing by spectral dispersion on Beamlet and NIF[J]. Proceedings of SPIE, 3492, 970-979(1999).

    [15] Zhong Z Q, Zhang B. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 32, 71-78(2020).

    [16] Li F J, Gao Y Q, Zhao X H et al. Near-field character and improvement technology of induced spatial incoherence[J]. Acta Physica Sinica, 67, 175201(2018).

    [17] Zhou Y Q, Fu W X, Zheng T R et al. Phase smoothing and polarisation-phase synchronous smoothing based on liquid crystal Pancharatnam-Berry phase devices[J]. Liquid Crystals, 48, 150-156(2021).

    [18] Tang Y F. Research on beam smoothing technology of high power Nd: glass laser[D](2017).

    [19] Li X W. Research of beam smoothing on target based on multiple phase plates[D](2014).

    [20] Zhong Z Q, Hou P C, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity[J]. Optics Letters, 40, 5850-5853(2015).

    [21] Zhong Z Q, Yi M Y, Sui Z et al. Ultrafast smoothing scheme for improving illumination uniformities of laser quads[J]. Optics Letters, 43, 3285-3288(2018).

    [22] Zhong Z Q, Sui Z, Zhang B et al. Improvement of irradiation uniformity by dynamic interference structures of laser array in inertial-confinement-fusion facilities[J]. Optics Communications, 455, 124558(2020).

    [23] Zhao X H, Gao Y Q, Li FJ et al. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence[J]. Applied Optics, 58, 2121-2126(2019).

    [24] Li T F, Zhong Z Q, Zhang B. Novel dynamic wavefront control scheme for ultra-fast beam smoothing[J]. Acta Physica Sinica, 67, 174206(2018).

    [25] Pan X T. The research on some problems of quality optimization in femtosecond laser micromachining[D](2017).

    [26] Haynam C A, Wegner P J, Auerbach J M et al. National Ignition Facility laser performance status[J]. Applied Optics, 46, 3276-3303(2007).

    [27] Su J Q, Wei X F, Ma C et al. Simulation on the model of low frequency distorted wavefront of laser beam[J]. High Power Laser & Particle Beams, 12, 163-166(2000).

    [28] Zhang R Z, Yang C L. Characteristics of random phase screen used in high power laser system[J]. High Power Laser and Particle Beams, 19, 1242-1246(2007).

    [29] Skupsky S, Short R W, Kessler T et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 66, 3456-3462(1989).

    [30] Huang Y, Zhang Y R, Zhong Z Q et al. Rapid polarization rotation smoothing scheme based on interference of circularly polarized vortex beamlets[J]. Chinese Journal of Lasers, 47, 0905003(2020).

    [31] Wen S L, Yan H, Zhang Y H et al. Calculation and experiment of the focal spot caused by continuous phase plate with incident wavefront distortion[J]. Acta Optica Sinica, 34, 0314001(2014).

    [32] Lei Z M, Sun X Y, Lu X Q. Error analysis of 2×2 beam array focus system with non-off-axis wedged lenses[J]. Chinese Journal of Lasers, 44, 0505001(2017).

    Dongyan Zou, Hao Xiong, Zheqiang Zhong, Bin Zhang. Ultrafast Beam Smoothing Scheme Based on Rotation Arrangement of Phase Plates[J]. Chinese Journal of Lasers, 2022, 49(4): 0405003
    Download Citation