[1] E I Moses. Ignition on the National Ignition Facility: a path towards inertial fusion energy[J]. Nuclear Fusion, 2009, 49(10): 104022.
[2] C A Haynam, R A Sacks, P J Wegner, et al.. The national ignition facility 2007 laser performance status[J]. Journal of Physics: Conference Series, 2008, 112(3): 032004.
[3] N Fleurot, C Cavailler, J L Bourgade. The laser mégajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status[J]. Fusion Engineering and Design, 2005, 74(14): 147-154.
[4] Gangyao Xiao, Dianyuan Fan, Shiji Wang, et al.. SG-II solid-state laser ICF system[C]. SPIE, 1999,3492: 890-895.
[5] Z Wanguo, Z Xiaomin, W Xiaofeng, et al.. Status of the SG-III solid-state laser facility[J]. Journal of Physics: Conference Series, 2008, 112(3): 032009.
[6] Gao Yanqi, Ma Weixin, Zhu Baoqiang, et al.. Status of the SG-II-UP laser facility[C]. IEEE Photonics Conference (IPC), 2013. 73-74.
[7] J D Lindl, P Amendt, R L Berger, et al.. The physics basis for ignition using indirect-drive targets on the national ignition facility[J]. Physics of Plasmas, 2004, 11(2): 339.
[9] Zhao Dongfeng, Wang Li, Lin Zunqi, et al.. Experimental study of 351 nm propagation with high fluence on No.9 system of SG-II laser facility[J]. Chinese J Lasers, 2011, 38(7): 0702001.
[10] D H Kalantar, P Di Nicola, N Shingleton, et al.. An overview of target and diagnostic alignment at the national ignition facility[C]. SPIE, 2012, 8505: 850509.
[11] P Wegner, J Auerbach, T Biesiada, et al.. NIF final optics system: frequency conversion and beam conditioning[C]. SPIE, 2004, 5341: 180-189.
[12] P Di Nicola, D Kalantar, Mccarville T, et al.. Beam and target alignment at the national ignition facility using the target alignment sensor (TAS)[C]. SPIE, 2012, 8505: 85050B.
[13] S J Boege, E S Bliss, C J Chocol, et al.. NIF pointing and centering systems and target alignment using a 351-nm laser source[C]. SPIE, 1997, 3047: 248-258.
[14] M Luttmann, V Denis, C Lanternier, et al.. Laser megajoule alignment to target center[C]. SPIE, 2011, 7916: 79160N.
[15] M Geitzholz, C Lanternier. Review of laser mega joule target area: design and processes[J]. Journal de Physique IV (Proceedings), 2006, 133: 631-636.
[18] R R Leach, A Conder, O Edwards, et al.. Hohlraum target alignment from X-ray detector images using starburst design patterns[C]. SPIE, 2011, 7916: 791616.
[19] Jin Xiaofeng, Zhang Peng, Liu Chunhua, et al.. Techniques on long-range and high-resolution imaging lidar[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050002.
[20] Jin Guofan, Li Jingzhen. Laser Metrology[M]. Beijing: Science Press, 1998.
[21] Tang Geshi. Radiometric Measuring Techniques for Deep Space Navigation[M]. Beijing: National Defense Industry Press, 2012.
[23] R Kodama, PA Norreys, K Mima, et al.. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition [J]. Nature ,2001,412(6849): 798-802.
[24] K A Tanaka, R Kodama, H Fujita, et al.. Studies of ultra-intense laser plasma interactions for fast ignition[J]. Physics of Plasmas, 2000,7(5): 2014-2022.
[25] Jiayong Zhong, Yutong Li, Xiaogang Wang, et al.. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6(12): 984.
[26] X Liu, Y T Li, Y Zhang, et al.. Collisionless shockwaves formed by counter streaming laser produced plasmas[J]. New Journal of Physics, 2011,13(9): 093001.
[27] C P J Barty, M Key, J Britten, et al.. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments [J]. Nuclear Fusion, 2004, 44(12): S266-S275.
[28] J K Crane, G Tietbohl, P Arnold, et al.. Progress on converting a NIF quad to eight, petawatt beams for advanced radiography[J]. Journal of Physics: Conference Series, 2010, 244(3): 032003.
[29] Zhaoyang Jiao, Yanli Zhang, Junyong Zhang, et al.. Spatio-temporal evolution of the optical field on a hohlraum wall at the rising edge of a flat-topped pulse[J]. High Power Laser Science and Engineering, 2013, 1(2): 88-93.
[30] J L Kline, D A Callahan, S H Glenzer, et al.. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20(5): 056314.
[31] S W Haan, J D Lindl, D A Callahan, et al.. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 2011, 18(5): 051001.
[32] Ke Lan, Jie Liu, Dongxian Lai, et al.. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at hohlraumto-capsule radius ratio of 5.14[J]. Physics of Plasmas, 2014, 21(1): 010704.
[33] A Bayramian, S Aceves, T Anklam, et al.. Compact, efficient laser systems required for laser inerial fusion energy[J]. Fusion Science and Technology, 2011, 60(1): 28-48.