[2] GU Li, SUN Hui-lai, YU Kai,et al. Research progress of micro-nanofabrication by femtosecond laser[J]. Laser & Infrared, 2013, 43(1): 14-18.
[3] SUNDARAM S K, MAZUR E, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J].Nature Materials, 2002, 1(4): 217.
[4] LIU Zhan-qiang, AI Xing. Study onwear surface morphology of high speed cutting tool[J]. Tribology, 2002, 22(6): 468-471.
[5] HAO Xiu-qing, SONG Xiao-lu, LI Liang,et al. Development and perspective of surface texturing tools[J]. Surface Technology, 2016, 45(9): 170-181.
[6] JIANG Zeng-hui, WANG Ling-ling, SHI Li,et al. Wear mechanism and characteristics of cutting Ti6Al4V with carbide tools[J]. Journal of Mechanical Engineering, 2014, 50(1): 178-184.
[7] NATHALA C S R, AJAMI A, HUSINSKY W, et al.Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients[J]. Applied Physics A-Materials Science & Processing, 2016, 122(2): 107.
[8] DANILOV P A, IONIN A A, KUDRYASHOV S I, et al. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation[J]. Journal of Experimentaland Theoretical Physics, 2015, 120(6): 946-959.
[9] HASHIDA M, NAMBA S, OKAMURO K,et al. Ion emission from a metal surface through a multiphoton process and optical field ionization[J]. Physical Review B, 2010, 81(11): 115442.
[10] JESCHKE H, GARCIA M. Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration[J].Applied Surface Science, 2002, 197: 107-113.
[11] MCDANIEL C, FLANAGAN A, OCONNOR G M.Evidence for increased incubation parameter in multi-pulse ablation of a Pt: SS alloy using a femtosecond laser at high repetition rates[J]. Applied Surface Science, 2014, 295: 1-7.
[12] NISO F D, GAUDISUO C, SIBILLANO T, et al. Influence of the repetitions rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel[J]. Physics Procedia, 2013, 41: 698-707.
[13] MANNION P T, MAGEE J, COYNE E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 2004, 233(1): 275-287.
[14] CUI Yun, ZHANG Han-yu, ZHAO Yuan-an, et al. The microscopic properties of Au film under the action of femtosecond laser[J]. Chinese Journal of Lasers, 2019, 46 (2): 0203001.
[15] ZHANG Wei, FENG Qiang, CHENG Guang-hua, et al. Femtosecond laser-induced ablation regimes and thresholds in a nickel-based superalloy[J]. Acta Optica Sinica, 2014, 3412: 348-354.
[16] WANG Tao, ZHAO Yuan-an, HUANG Jian-bing, et al. Cumulative effect of optical film damage under multi-pulse laser[J]. Acta Photonica Sinica, 2006, 35(6): 859-862.
[17] YANG Qi-biao, CHEN Zhong-pei, CHEN Lie,et al. Effects of nanosecond laser-induced micro-pits on surface wettability of YG3[J]. Chinese Surface Engineering, 2018, 31(3): 1-8.
[18] KRUGER J, KAUTEK W. Ultrashort pulse laser interaction with dielectrics and polymers[J]. Advances in Polymer Science, 2004, 168: 247-290.
[19] LENZNER M, KRUGER J, SARTANIA S, et al. Femtosecond optical breakdown in dielectrics[J]. Physical Review Letters, 1998, 80(18): 4076-4079.
[20] KUANG Z, PERRIE W, LIU D, et al. Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns[J]. Applied Surface Science, 2012, 258(19): 7601-7606.
[21] WANG Fei, LI Yu-yao, CHE Ying, et al. Measurement system of flattop laser induced damage threshold to film[J]. Acta Photonica Sinica, 2016,45(3): 0314003.
[22] XU Jun-qi, SU Jun-hong, GE Jin-man, et al. Measurement uncertainty of laser-induced damage threshold of the optical thin films[J]. Infrared and Laser Engineering, 2017, 46(8): 806007.