• Photonics Research
  • Vol. 6, Issue 11, 1074 (2018)
Zhipeng Qin, Guoqiang Xie*, Jingui Ma, Peng Yuan, and Liejia Qian
Author Affiliations
  • Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.6.001074 Cite this Article Set citation alerts
    Zhipeng Qin, Guoqiang Xie, Jingui Ma, Peng Yuan, Liejia Qian. 2.8  μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 2018, 6(11): 1074 Copy Citation Text show less
    References

    [1] B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, J. Faist. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett., 91, 231101(2007).

    [2] H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, H. M. A. Schleijpen. Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE, 5615, 27-38(2004).

    [3] D. Halmer, S. Thelen, P. Hering, M. Mürtz. Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer. Appl. Phys. B, 85, 437-443(2006).

    [4] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, O. Bang. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett., 43, 999-1002(2018).

    [5] Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235-238(2017).

    [6] O. Henderson-Sapir, J. Munch, D. J. Ottaway. Mid-infrared fiber lasers at and beyond 3.5??μm using dual-wavelength pumping. Opt. Lett., 39, 493-496(2014).

    [7] O. Henderson-Sapir, J. Munch, D. J. Ottaway. New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers. Opt. Express, 24, 6869-6883(2016).

    [8] F. Maes, V. Fortin, M. Bernier, R. Vallée. Quenching of 3.4??μm dual-wavelength pumped erbium doped fiber lasers. IEEE J. Quantum Electron., 53, 1600208(2017).

    [9] M. Heck, S. Nolte, A. Tünnermann, R. Vallée, M. Bernier. Femtosecond-written long-period gratings in fluoride lasers. Opt. Lett., 43, 1994-1997(2018).

    [10] V. Fortin, M. Bernier, S. T. Bah, R. Vallée. 30??W fluoride glass all-fiber laser at 2.94??μm. Opt. Lett., 40, 2882-2885(2015).

    [11] F. Maes, V. Fortin, M. Bernier, R. Vallée. 5.6??W monolithic fiber laser at 3.55??μm. Opt. Lett., 42, 2054-2057(2017).

    [12] Z. Qin, G. Xie, J. Ma, P. Yuan, L. Qian. Mid-infrared Er:ZBLAN fiber laser reaching 3.68??μm wavelength. Chin. Opt. Lett., 15, 111402(2017).

    [13] C. A. Schafer, H. Uehara, D. Konishi, S. Hattori, H. Matsukuma, M. Murakami, S. Shimizu, S. Tokita. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8??μm. Opt. Lett., 43, 2340-2343(2018).

    [14] Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, J. Wang. Scaling all-fiber mid-infrared supercontinuum up to 10??W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photon. Res., 4, 135-139(2016).

    [15] J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, D. Y. Tang. Graphene mode-locked femtosecond laser at 2??μm wavelength. Opt. Lett., 37, 2085-2087(2012).

    [16] G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, D. Y. Tang. Graphene saturable absorber for Q-switching and mode-locking at 2??μm wavelength [Invited]. Opt. Mater. Express, 2, 878-883(2012).

    [17] G. Sobon. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited]. Photon. Res., 3, A56-A63(2015).

    [18] L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, H. J. Zhang. Passive Q-switching and Q-switched mode-locking operations of 2??μm Tm:CLNGG laser with MoS2 saturable absorber mirror. Photon. Res., 3, A47-A50(2015).

    [19] C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, S. Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [20] Y. F. Song, L. Li, H. Zhang, D. Y. Shen, D. Y. Tang, K. P. Loh. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express, 21, 10010-10018(2013).

    [21] Y. F. Song, H. Zhang, L. M. Zhao, D. Y. Shen, D. Y. Tang. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express, 24, 1814-1822(2016).

    [22] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8??μm. IEEE Photon. Technol. Lett., 28, 7-10(2016).

    [23] L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, L. Qian. Black phosphorus as broadband saturable absorber for pulsed lasers from 1??μm to 2.7??μm wavelength. Laser Phys. Lett., 13, 045801(2016).

    [24] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking operation. Opt. Express, 23, 12823-12833(2015).

    [25] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan. Broadband nonlinear optical response in multilayer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 23, 11183-11194(2015).

    [26] Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, H. Zhang. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 23, 20030-20039(2015).

    [27] H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li, Y. Chen, H. Zhang, H. Bao, S. P. Lau, C. Pan, D. Fan, Q. Bao. Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater., 3, 1447-1453(2015).

    [28] D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep., 5, 15899(2015).

    [29] J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, D. Fan. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. Opt. Express, 23, 22643-22648(2015).

    [30] Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, D. Tang. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express, 24, 25933-25942(2016).

    [31] C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, Y. Liu. Passively Q-switched mid-infrared fluoride fiber laser around 3?μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett., 13, 105108(2016).

    [32] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z.-X. Shen. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 325, 178-181(2009).

    [33] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 26, 3538-3544(2014).

    [34] V. Tran, R. Soklaski, Y. Liang, L. Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [35] Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, L. Qian. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8??μm. Opt. Express, 23, 24713-24718(2015).

    [36] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 41, 56-59(2016).

    [37] Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, D. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5??μm wavelength. Opt. Express, 26, 8224-8231(2018).

    [38] M. T. Edmonds, A. Tadich, A. Carvalho, A. Ziletti, K. M. O’Donnell, S. P. Koenig, D. F. Coker, B. Özyilmaz, A. H. Neto, M. S. Fuhrer. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces, 7, 14557-14562(2015).

    [39] S. Antipov, D. D. Hudson, A. Fuerbach, S. D. Jackson. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373-1376(2016).

    CLP Journals

    [1] Hongan Gu, Zhipeng Qin, Guoqiang Xie, Ting Hai, Peng Yuan, Jingui Ma, Liejia Qian. Generation of 131 fs mode-locked pulses from 2.8 μm Er:ZBLAN fiber laser[J]. Chinese Optics Letters, 2020, 18(3): 031402

    [2] Chen Wei, Liqiang Zhou, Dongsheng Wang, Hao Chi, Hua Huang, Han Zhang, Yong Liu. MXene-Ti3C2Tx for watt-level high-efficiency pulse generation in a 2.8 μm mid-infrared fiber laser[J]. Photonics Research, 2020, 8(6): 972

    [3] Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, Peiguang Yan. Recent development of saturable absorbers for ultrafast lasers [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081405

    Zhipeng Qin, Guoqiang Xie, Jingui Ma, Peng Yuan, Liejia Qian. 2.8  μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 2018, 6(11): 1074
    Download Citation