• High Power Laser Science and Engineering
  • Vol. 7, Issue 3, 03000e41 (2019)
Hang Yuan1, Yulei Wang1、3、†, Qiang Yuan2, Dongxia Hu2, Can Cui1, Zhaohong Liu1, Sensen Li1, Yi Chen1, Feng Jing2, and Zhiwei Lü1、3、†
Author Affiliations
  • 1National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
  • 2Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 3School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • show less
    DOI: 10.1017/hpl.2019.31 Cite this Article Set citation alerts
    Hang Yuan, Yulei Wang, Qiang Yuan, Dongxia Hu, Can Cui, Zhaohong Liu, Sensen Li, Yi Chen, Feng Jing, Zhiwei Lü. Amplification of 200-ps high-intensity laser pulses via frequency matching stimulated Brillouin scattering[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e41 Copy Citation Text show less

    Abstract

    Laser pulses of 200 ps with extremely high intensities and high energies are sufficient to satisfy the demand of shock ignition, which is an alternative path to ignition in inertial confinement fusion (ICF). This paper reports a type of Brillouin scheme to obtain high-intensity 200-ps laser pulses, where the pulse durations are a challenge for conventional pulsed laser amplification systems. In the amplification process, excited Brillouin acoustic waves fulfill the nonlinear optical effect through which the high energy of a long pump pulse is entirely transferred to a 200-ps laser pulse. This method was introduced and achieved within the SG-III prototype system in China. Compared favorably with the intensity of $2~\text{GW}/\text{cm}^{2}$ in existing ICF laser drivers, a 6.96-$\text{GW}/\text{cm}^{2}$ pulse with a width of 170 ps was obtained in our experiment. The practical scalability of the results to larger ICF laser drivers is discussed.
    $$\begin{eqnarray}\displaystyle & \displaystyle \frac{\unicode[STIX]{x2202}E_{\text{L}}}{\unicode[STIX]{x2202}z}+\frac{n}{c}\frac{\unicode[STIX]{x2202}E_{\text{L}}}{\unicode[STIX]{x2202}t}=\frac{i\unicode[STIX]{x1D714}_{\text{L}}\unicode[STIX]{x1D6FE}}{2nc\unicode[STIX]{x1D70C}_{0}}\unicode[STIX]{x1D70C}E_{\text{S}}, & \displaystyle\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle -\frac{\unicode[STIX]{x2202}E_{\text{S}}}{\unicode[STIX]{x2202}z}+\frac{n}{c}\frac{\unicode[STIX]{x2202}E_{\text{S}}}{\unicode[STIX]{x2202}t}=\frac{i\unicode[STIX]{x1D714}_{\text{S}}\unicode[STIX]{x1D6FE}}{2nc\unicode[STIX]{x1D70C}_{0}}\unicode[STIX]{x1D70C}^{\ast }E_{\text{L}}, & \displaystyle\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \frac{\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D70C}}{\unicode[STIX]{x2202}t^{2}}-(2i\unicode[STIX]{x1D714}-\unicode[STIX]{x1D6E4}_{\text{B}})\frac{\unicode[STIX]{x2202}\unicode[STIX]{x1D70C}}{\unicode[STIX]{x2202}t}-(i\unicode[STIX]{x1D714}\unicode[STIX]{x1D6E4}_{\text{B}})\unicode[STIX]{x1D70C}=\frac{\unicode[STIX]{x1D6FE}}{4\unicode[STIX]{x03C0}}q_{\text{B}}^{2}E_{\text{L}}E_{\text{S}}^{\ast }. & \displaystyle\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D70C}(z,t) & = & \displaystyle \frac{\unicode[STIX]{x1D6FE}q_{\text{B}}^{2}}{4\unicode[STIX]{x03C0}\unicode[STIX]{x1D6FA}_{\text{B}}}\frac{1}{\sqrt{2\unicode[STIX]{x03C0}}}\int _{-\infty }^{t}f(t-\unicode[STIX]{x1D70F})E_{\text{L}}(z,\unicode[STIX]{x1D70F})E_{\text{S}}^{\ast }(z,\unicode[STIX]{x1D70F})\,\text{d}\unicode[STIX]{x1D70F},\nonumber\\ \displaystyle & & \displaystyle\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}\displaystyle f(t) & = & \displaystyle \frac{-\sqrt{2\unicode[STIX]{x03C0}}\unicode[STIX]{x1D6FA}_{\text{B}}\exp [-(\unicode[STIX]{x1D6E4}_{\text{B}}/2)t]}{\sqrt{\unicode[STIX]{x1D6FA}_{\text{B}}-\frac{\unicode[STIX]{x1D6E4}_{\text{B}}^{2}}{4}t}}\exp (i\unicode[STIX]{x1D6FA}_{\text{B}}t)\nonumber\\ \displaystyle & & \displaystyle \times \,\sin \left(\sqrt{\unicode[STIX]{x1D6FA}_{\text{B}}-\frac{\unicode[STIX]{x1D6E4}_{\text{B}}^{2}}{4}}t\right),\quad t\geqslant 0.\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \frac{\unicode[STIX]{x2202}E_{\text{L}}}{\unicode[STIX]{x2202}z}+\frac{n}{c}\frac{\unicode[STIX]{x2202}E_{\text{L}}}{\unicode[STIX]{x2202}t}=-ig\unicode[STIX]{x1D710}E_{\text{S}},\quad & \displaystyle\end{eqnarray}$$(6)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle -\frac{\unicode[STIX]{x2202}E_{\text{S}}}{\unicode[STIX]{x2202}z}+\frac{n}{c}\frac{\unicode[STIX]{x2202}E_{\text{S}}}{\unicode[STIX]{x2202}t}=-ig\unicode[STIX]{x1D710}^{\ast }E_{\text{L}},\quad & \displaystyle\end{eqnarray}$$(7)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \unicode[STIX]{x1D710}(z,t)=\frac{1}{\sqrt{2\unicode[STIX]{x03C0}}}\int _{-\infty }^{t}f(t-\unicode[STIX]{x1D70F})E_{\text{L}}(z,\unicode[STIX]{x1D70F})E_{\text{S}}^{\ast }(z,\unicode[STIX]{x1D70F})\,\text{d}\unicode[STIX]{x1D70F}.\quad & \displaystyle\end{eqnarray}$$(8)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \frac{\unicode[STIX]{x2202}E_{\text{L}}}{\unicode[STIX]{x2202}z}+\frac{n}{c}\frac{\unicode[STIX]{x2202}E_{\text{L}}}{\unicode[STIX]{x2202}t}=-ig\unicode[STIX]{x1D710}E_{\text{S}}-\frac{\unicode[STIX]{x1D6FC}}{2}E_{\text{L}}-\frac{\unicode[STIX]{x1D6FD}}{4}E_{\text{L}}^{2},\quad & \displaystyle\end{eqnarray}$$(9)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle -\frac{\unicode[STIX]{x2202}E_{\text{S}}}{\unicode[STIX]{x2202}z}+\frac{n}{c}\frac{\unicode[STIX]{x2202}E_{\text{S}}}{\unicode[STIX]{x2202}t}=-ig\unicode[STIX]{x1D710}^{\ast }E_{\text{L}}-\frac{\unicode[STIX]{x1D6FC}}{2}E_{\text{S}}-\frac{\unicode[STIX]{x1D6FD}}{4}E_{\text{S}}^{2},\quad & \displaystyle\end{eqnarray}$$(10)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle \unicode[STIX]{x1D710}(z,t)=\frac{1}{\sqrt{2\unicode[STIX]{x03C0}}}\int _{-\infty }^{t}f(t-\unicode[STIX]{x1D70F})E_{\text{L}}(z,\unicode[STIX]{x1D70F})E_{\text{S}}^{\ast }(z,\unicode[STIX]{x1D70F})\,\text{d}\unicode[STIX]{x1D70F}.\quad & \displaystyle\end{eqnarray}$$(11)

    View in Article

    $$\begin{eqnarray}\displaystyle \frac{P_{\text{th}}}{P_{0}}=\frac{1}{\max [J_{n}^{2}(\unicode[STIX]{x1D6FE})]}, & & \displaystyle\end{eqnarray}$$(12)

    View in Article

    $$\begin{eqnarray}\displaystyle l_{\text{eff}}=\left\{\begin{array}{@{}ll@{}}\frac{d}{2\sin \big(\frac{\unicode[STIX]{x1D703}}{2}\big)}, & l_{m}\leqslant l,\\ \frac{d-d\Big[1-\frac{l\sin \big(\frac{\unicode[STIX]{x1D703}}{2}\big)}{d}\Big]^{2}}{2\sin \big(\frac{\unicode[STIX]{x1D703}}{2}\big)}, & l_{m}>l,\end{array}\right. & & \displaystyle\end{eqnarray}$$(13)

    View in Article

    Hang Yuan, Yulei Wang, Qiang Yuan, Dongxia Hu, Can Cui, Zhaohong Liu, Sensen Li, Yi Chen, Feng Jing, Zhiwei Lü. Amplification of 200-ps high-intensity laser pulses via frequency matching stimulated Brillouin scattering[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e41
    Download Citation