• Advanced Photonics Nexus
  • Vol. 4, Issue 4, 046001 (2025)
Zhiping Wang1,2,†, Tianci Feng1,3, Aiye Wang1,3, Jinghao Xu1,3, and An Pan1,3,*
Author Affiliations
  • 1Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
  • 2Lanzhou University, School of Physical Science and Technology, Lanzhou, China
  • 3University of Chinese Academy of Sciences, Beijing, China
  • show less
    DOI: 10.1117/1.APN.4.4.046001 Cite this Article Set citation alerts
    Zhiping Wang, Tianci Feng, Aiye Wang, Jinghao Xu, An Pan, "Fusion-based enhancement of multi-exposure Fourier ptychographic microscopy," Adv. Photon. Nexus 4, 046001 (2025) Copy Citation Text show less
    References

    [1] B. Sun et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013). https://doi.org/10.1126/science.1234454

    [2] Z. Liu et al. All-fiber high-speed image detection enabled by deep learning. Nat. Commun., 13, 1433(2022). https://doi.org/10.1038/s41467-022-29178-8

    [3] X. Li et al. A multi-frame image super-resolution method. Signal Process., 90, 405-414(2010). https://doi.org/10.1016/j.sigpro.2009.05.028

    [4] X. Liu et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620-623(2019). https://doi.org/10.1038/s41586-019-1461-3

    [5] S. Li et al. Lensless camera: unraveling the breakthroughs and prospects. Fundam. Res.(2024). https://doi.org/10.1016/j.fmre.2024.03.019

    [6] A. F. Coskun, A. Ozcan. Computational imaging, sensing and diagnostics for global health applications. Curr. Opin. Biotechnol., 25, 8-16(2014). https://doi.org/10.1016/j.copbio.2013.08.008

    [7] L. Lu et al. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy. Adv. Photonics, 4, 056002(2022). https://doi.org/10.1117/1.AP.4.5.056002

    [8] P. F. Gao, G. Lei, C. Z. Huang. Dark-field microscopy: recent advances in accurate analysis and emerging applications. Anal. Chem., 93, 4707-4726(2021). https://doi.org/10.1021/acs.analchem.0c04390

    [9] A. Pan et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers. Opt. Express, 26, 23119-23131(2018). https://doi.org/10.1364/OE.26.023119

    [10] Z. F. Phillips, R. Eckert, L. Waller. Quasi-dome: a self-calibrated high-NA LED illuminator for Fourier ptychography, IW4E–5(2017).

    [11] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon., 7, 739-745(2013). https://doi.org/10.1038/nphoton.2013.187

    [12] X. Ou et al. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett., 38, 4845-4848(2013). https://doi.org/10.1364/OL.38.004845

    [13] J. Sun et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett., 43, 3365-3368(2018). https://doi.org/10.1364/OL.43.003365

    [14] L. Tian et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2, 904-911(2015). https://doi.org/10.1364/OPTICA.2.000904

    [15] L. Bian et al. Content adaptive illumination for Fourier ptychography. Opt. Lett., 39, 6648-6651(2014). https://doi.org/10.1364/OL.39.006648

    [16] J. Sun et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep., 8, 7669(2018). https://doi.org/10.1038/s41598-018-25797-8

    [17] Y. Xiao et al. High-speed Fourier ptychographic microscopy for quantitative phase imaging. Opt. Lett., 46, 4785-4788(2021). https://doi.org/10.1364/OL.428731

    [18] Z. Bian, S. Dong, G. Zheng. Adaptive system correction for robust Fourier ptychographic imaging. Opt. Express, 21, 32400-32410(2013). https://doi.org/10.1364/OE.21.032400

    [19] A. Pan et al. Vignetting effect in Fourier ptychographic microscopy. Opt. Lasers Eng., 120, 40-48(2019). https://doi.org/10.1016/j.optlaseng.2019.02.015

    [20] A. Pan et al. System calibration method for Fourier ptychographic microscopy. J. Biomed. Opt., 22, 096005(2017). https://doi.org/10.1117/1.JBO.22.9.096005

    [21] P. Song et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photonics, 4, 050802(2019). https://doi.org/10.1063/1.5090552

    [22] X. Ou, G. Zheng, C. Yang. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express, 22, 4960-4972(2014). https://doi.org/10.1364/OE.22.004960

    [23] Z. Tian et al. Optical remote imaging via Fourier ptychography. Photon. Res., 11, 2072-2083(2023). https://doi.org/10.1364/PRJ.493938

    [24] R. Claveau et al. Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy. Biomed. Opt. Express, 11, 215-226(2020). https://doi.org/10.1364/BOE.11.000215

    [25] F. Xu et al. Fourier ptychographic microscopy 10 years on: a review. Cells, 13, 324(2024). https://doi.org/10.3390/cells13040324

    [26] M. Liang et al. All-in-focus fine needle aspiration biopsy imaging based on Fourier ptychographic microscopy. J. Pathol. Inform., 13, 100119(2022). https://doi.org/10.1016/j.jpi.2022.100119

    [27] A. Williams et al. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. J. Biomed. Opt., 19, 066007-066007(2014). https://doi.org/10.1117/1.JBO.19.6.066007

    [28] M. Valentino et al. Beyond conventional microscopy: observing kidney tissues by means of Fourier ptychography. Front. Physiol., 14, 206(2023). https://doi.org/10.3389/fphys.2023.1120099

    [29] J. Kim et al. Incubator embedded cell culture imaging system (EMSight) based on Fourier ptychographic microscopy. Biomed. Opt. Express, 7, 3097-3110(2016). https://doi.org/10.1364/BOE.7.003097

    [30] A. C. Chan et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 eyes). Sci. Rep., 9, 11114(2019). https://doi.org/10.1038/s41598-019-47146-z

    [31] A. Pan et al. In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 eyes)(2019).

    [32] O. Akcakr et al. Automated wide-field malaria parasite infection detection using Fourier ptychography on stain-free thin-smears. Biomed. Opt. Express, 13, 3904-3921(2022). https://doi.org/10.1364/BOE.448099

    [33] T. Aidukas, L. Loetgering, A. R. Harvey. Addressing phase-curvature in Fourier ptychography. Opt. Express, 30, 22421-22434(2022). https://doi.org/10.1364/OE.458657

    [34] S. Zhang et al. FPM-WSI: Fourier ptychographic whole slide imaging via feature-domain backdiffraction. Optica, 11, 634-646(2024). https://doi.org/10.1364/OPTICA.517277

    [35] S. Zhang, T. T. Berendschot, J. Zhou. ELFPIE: an error-laxity Fourier ptychographic iterative engine. Signal Process., 210, 109088(2023). https://doi.org/10.1016/j.sigpro.2023.109088

    [36] Y. Zhang, X. Bai, T. Wang. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf. Fusion, 35, 81-101(2017). https://doi.org/10.1016/j.inffus.2016.09.006

    [37] J. Zhang et al. Efficient colorful Fourier ptychographic microscopy reconstruction with wavelet fusion. IEEE Access, 6, 31729-31739(2018). https://doi.org/10.1109/ACCESS.2018.2841854

    [38] H. Gao et al. Redundant information model for Fourier ptychographic microscopy. Opt. Express, 31, 42822-42837(2023). https://doi.org/10.1364/OE.505407

    [39] C. Zuo, J. Sun, Q. Chen. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express, 24, 20724-20744(2016). https://doi.org/10.1364/OE.24.020724

    [40] S. Jiang et al. Spatial- and Fourier-domain ptychography for high-throughput bio-imaging. Nat. Protoc., 18, 2051-2083(2023). https://doi.org/10.1038/s41596-023-00829-4

    [41] E. Reinhard et al. High Dynamic Range Imaging: Acquisition, Display, and Image-based Lighting(2010).

    [42] H. Zhang et al. Image fusion meets deep learning: a survey and perspective. Inf. Fusion, 76, 323-336(2021). https://doi.org/10.1016/j.inffus.2021.06.008

    [43] F. Xu et al. Multi-exposure image fusion techniques: a comprehensive review. Remote Sens., 14, 771(2022). https://doi.org/10.3390/rs14030771

    [44] Y. Zhang et al. IFCNN: a general image fusion framework based on convolutional neural network. Inf. Fusion, 54, 99-118(2020). https://doi.org/10.1016/j.inffus.2019.07.011

    [45] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3, 27-29(1978). https://doi.org/10.1364/OL.3.000027

    [46] T. Nguyen et al. Deep learning approach for Fourier ptychography microscopy. Opt. Express, 26, 26470-26484(2018). https://doi.org/10.1364/OE.26.026470

    [47] A. Saha et al. LWGNet-learned Wirtinger gradients for Fourier ptychographic phase retrieval. Lect. Notes Comput. Sci., 13667, 522-537(2022). https://doi.org/10.1007/978-3-031-20071-7_31

    [48] Y. Xue et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019). https://doi.org/10.1364/OPTICA.6.000618

    [49] X. Wang et al. Fourier ptychographic microscopy reconstruction method based on residual transfer networks. J. Phys. Conf. Ser., 2400, 012015(2022). https://doi.org/10.1088/1742-6596/2400/1/012015