• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036010 (2025)
Zhineng Xie1, Weihao Lin1, Mengjiao Zhu1, Jianmin Yang1..., Chenfan Shen1, Xin Jin1, Xiafei Qian2 and Min Xu1,3,*|Show fewer author(s)
Author Affiliations
  • 1Wenzhou Medical University, Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou, China
  • 2Hangzhou First People’s Hospital, Hangzhou, China
  • 3The City University of New York, Hunter College and the Graduate Center, Department of Physics and Astronomy, New York, United States
  • show less
    DOI: 10.1117/1.APN.4.3.036010 Cite this Article Set citation alerts
    Zhineng Xie, Weihao Lin, Mengjiao Zhu, Jianmin Yang, Chenfan Shen, Xin Jin, Xiafei Qian, Min Xu, "Reciprocal polarization imaging of complex media," Adv. Photon. Nexus 4, 036010 (2025) Copy Citation Text show less
    References

    [1] T. Durduran et al. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys., 73, 076701(2010). https://doi.org/10.1088/0034-4885/73/7/076701

    [2] V. V. Tuchin. Polarized light interaction with tissues. J. Biomed. Opt., 21, 071114(2016). https://doi.org/10.1117/1.JBO.21.7.071114

    [3] A. Zaidi et al. Metasurface-enabled single-shot and complete Mueller matrix imaging. Nat. Photonics, 18, 704-712(2024). https://doi.org/10.1038/s41566-024-01426-x

    [4] C. He et al. Revealing complex optical phenomena through vectorial metrics. Adv. Photonics, 4, 026001(2022). https://doi.org/10.1117/1.AP.4.2.026001

    [5] N. A. Rubin et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, eaax1839(2019). https://doi.org/10.1126/science.aax1839

    [6] J. S. Tyo et al. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt., 45, 5453-5469(2006). https://doi.org/10.1364/AO.45.005453

    [7] S. Demos, R. Alfano. Optical polarization imaging. Appl. Opt., 36, 150-155(1997). https://doi.org/10.1364/AO.36.000150

    [8] J. Qi, D. S. Elson. Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics, 10, 950-982(2017). https://doi.org/10.1002/jbio.201600152

    [9] J. C. Ramella-Roman, I. Saytashev, M. Piccini. A review of polarization-based imaging technologies for clinical and preclinical applications. J. Opt., 22, 123001(2020). https://doi.org/10.1088/2040-8986/abbf8a

    [10] H. He et al. Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534-2548(2019). https://doi.org/10.1109/JLT.2018.2868845

    [11] C. He et al. Polarization optics for biomedical and clinical applications: a review. Light Sci. Appl., 10, 194(2021). https://doi.org/10.1038/s41377-021-00639-x

    [12] N. Ghosh, M. F. G. Wood, I. A. Vitkin. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt., 13, 044036(2008). https://doi.org/10.1117/1.2960934

    [13] S. Manhas et al. Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Opt. Express, 14, 190-202(2006). https://doi.org/10.1364/OPEX.14.000190

    [14] M. F. Wood et al. Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. J. Biomed. Opt., 14, 014029(2009). https://doi.org/10.1117/1.3065545

    [15] N. Ghosh, I. A. Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011). https://doi.org/10.1117/1.3652896

    [16] J. C. Ramella-Roman, T. Novikova. Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications(2022).

    [17] O. J Rodriguez-Nunez et al. Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Biomed. Opt. Express, 12, 6674-6685(2021). https://doi.org/10.1364/BOE.439754

    [18] A. Pierangelo et al. Polarimetric imaging of uterine cervix: a case study. Opt. Express, 21, 14120-14130(2013). https://doi.org/10.1364/OE.21.014120

    [19] T. Novikova et al. Polarimetric imaging for cancer diagnosis and staging. Opt. Photonics News, 23, 26(2012). https://doi.org/10.1364/OPN.23.10.000026

    [20] P. Westphal, J.-M. Kaltenbach, K. Wicker. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for noninvasive glucose monitoring. Biomed. Opt. Express, 7, 1160-1174(2016). https://doi.org/10.1364/BOE.7.001160

    [21] N. Mazumder et al. Mueller matrix signature in advanced fluorescence microscopy imaging. J. Opt., 19, 025301(2017). https://doi.org/10.1088/2040-8986/aa5114

    [22] J. Chue-Sang et al. Use of Mueller matrix colposcopy in the characterization of cervical collagen anisotropy. J. Biomed. Opt., 23, 121605(2018). https://doi.org/10.1117/1.JBO.23.12.121605

    [23] J. J. Gil, R. Ossikovski. Polarized Light and the Mueller Matrix Approach(2016).

    [24] S. Y. Lu, R. A. Chipman. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Amer. A, 13, 1106-1113(1996). https://doi.org/10.1364/JOSAA.13.001106

    [25] R. Ossikovski, A. De Martino, S. Guyot. Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett., 32, 689-691(2007). https://doi.org/10.1364/OL.32.000689

    [26] R. Ossikovski. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Amer. A., 26, 1109-1118(2009). https://doi.org/10.1364/JOSAA.26.001109

    [27] N. Ortega-Quijano, J. L. Arce-Diego. Mueller matrix differential decomposition. Opt. Lett., 36, 1942-1944(2011). https://doi.org/10.1364/OL.36.001942

    [28] N. Ortega-Quijano et al. Experimental validation of Mueller matrix differential decomposition. Opt. Express, 20, 1151-1163(2012). https://doi.org/10.1364/OE.20.001151

    [29] Z. Sekera. Scattering matrices and reciprocity relationships for various representations of the state of polarization. J. Opt. Soc. Amer., 56, 1732-1740(1966). https://doi.org/10.1364/JOSA.56.001732

    [30] Z. Xie et al. Reciprocal polarization imaging of optical activity in reflection. Opt. Lett., 49, 2349-2352(2024). https://doi.org/10.1364/OL.516468

    [31] Y. Bolshakov, I. Gohberg, P. Lancaster, P. N. Shivakumar et al. Polar decompositions in finite dimensional indefinite scalar product spaces: special cases and applications. Recent Developments in Operator Theory and Its Applications, 61-94(1996).

    [32] R. Ossikovski. Canonical forms of depolarizing Mueller matrices. J. Opt. Soc. Amer. A., 27, 123-130(2010). https://doi.org/10.1364/JOSAA.27.000123

    [33] O. Arteaga, J. C. Ramella-Roman, T. Novikova, R. Ossikovski. Mueller matrix analysis, decompositions, and novel quantitative approaches to processing complex polarimetric data. Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications, 25-60(2022).

    [34] I. A. Vitkin, R. D. Laszlo, C. L. Whyman. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light. Opt. Express, 10, 222-229(2002). https://doi.org/10.1364/OE.10.000222

    [35] W. Wang et al. Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples. J. Biomed. Opt., 19, 046020(2014). https://doi.org/10.1117/1.JBO.19.4.046020

    [36] R. N. Huynh, G. Nehmetallah, C. B. Raub. Mueller matrix polarimetry and polar decomposition of articular cartilage imaged in reflectance. Biomed. Opt. Express, 12, 5160-5178(2021). https://doi.org/10.1364/BOE.428223

    [37] Z. Xie et al. Reciprocal polarization imaging of complex media(2024). https://github.com/BiomedPhotonics/Reciprocal-polarization-imaging

    [38] A. A. Kokhanovsky. Parameterization of the Mueller matrix of oceanic waters. J. Geophys. Res-Oceans, 108, C6(2003). https://doi.org/10.1029/2001JC001222

    [39] J. Qi et al. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng., 7, 971-985(2023). https://doi.org/10.1038/s41551-023-01018-0

    [40] A. W. Dreher, K. Reiter, R. N. Weinreb. Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl. Opt., 31, 3730-3735(1992). https://doi.org/10.1364/AO.31.003730

    [41] D. Zhu et al. Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. Biomed. Opt. Express, 12, 3021-3036(2021). https://doi.org/10.1364/BOE.423026

    [42] J. Vizet, R. Ossikovski. Symmetric decomposition of experimental depolarizing Mueller matrices in the degenerate case. Appl. Opt., 57, 1159-1167(2018). https://doi.org/10.1364/AO.57.001159

    [43] N. Ghosh, M. F. Wood, I. A. Vitkin. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt., 13, 044036(2008). https://doi.org/10.1117/1.2960934

    [44] S. Shibata, N. Hagen, Y. Otani. Robust full Stokes imaging polarimeter with dynamic calibration. Opt. Lett., 44, 891-894(2019). https://doi.org/10.1364/OL.44.000891

    [45] H. Li et al. Optimization of polarization-camera-based full stokes polarimeter. Acta Opt. Sin., 40, 0326001(2020). https://doi.org/10.3788/AOS202040.0326001

    [46] M. Xu. Electric field Monte Carlo simulation of polarized light propagation in turbid media. Opt. Express, 12, 6530-6539(2004). https://doi.org/10.1364/opex.12.006530

    [47] L.-H. Lin et al. Optical detection of glucose concentration in samples with scattering particles. Appl. Opt., 54, 10425-10431(2015). https://doi.org/10.1364/AO.54.010425

    [48] G. L. Coté, M. D. Fox, R. B. Northrop. Noninvasive optical polarimetric glucose sensing using a true phase measurement technique. IEEE Trans. Biomed. Eng., 39, 752-756(1992). https://doi.org/10.1109/10.142650

    [49] R. Ossikovski, M. Anastasiadou, A. D. Martino. Product decompositions of depolarizing Mueller matrices with negative determinants. Opt. Commun., 281, 2406-2410(2008). https://doi.org/10.1016/j.optcom.2007.12.076

    [50] S. H. Yoo, R. Ossikovski, E. Garcia-Caurel. Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition. Appl. Surf. Sci., 421, 870-877(2017). https://doi.org/10.1016/j.apsusc.2017.01.099

    [51] S. Kumar et al. Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media. J. Biomed. Opt., 17, 105006(2012). https://doi.org/10.1117/1.JBO.17.10.105006

    [52] R. Ossikovski. Differential matrix formalism for depolarizing anisotropic media. Opt. Lett., 36, 2330-2332(2011). https://doi.org/10.1364/OL.36.002330

    Zhineng Xie, Weihao Lin, Mengjiao Zhu, Jianmin Yang, Chenfan Shen, Xin Jin, Xiafei Qian, Min Xu, "Reciprocal polarization imaging of complex media," Adv. Photon. Nexus 4, 036010 (2025)
    Download Citation