[7] HAN S. Assessment of curing schemes for effectively controlling thermal behavior of mass concrete foundation at early ages[J]. Constr Build Mater, 2020, 230: 117004.
[8] SAEED M K, RAHMAN M K, BALUCH M H. Early age thermal cracking of mass concrete blocks with Portland cement and ground granulated blast-furnace slag[J]. Mag Concr Res, 2016, 68(13): 647–663.
[9] KLEMCZAK B, BATOG M, GIERGICZNY Z, et al. Complex effect of concrete composition on the thermo-mechanical behaviour of mass concrete[J]. Materials, 2018, 11(11): 2207.
[10] BOURCHY A, BARNES L, BESSETTE L, et al. Optimization of concrete mix design to account for strength and hydration heat in massive concrete structures[J]. Cem Concr Compos, 2019, 103: 233–241.
[11] LU X C, CHEN B F, TIAN B, et al. A new method for hydraulic mass concrete temperature control: Design and experiment[J]. Constr Build Mater, 2021, 302: 124167.
[12] HU Y H, CHEN J, ZOU F, et al. A comparative study of temperature of mass concrete placed in August and November based on on-site measurement[J]. Case Stud Constr Mater, 2021, 15: e00694.
[13] CAO F J, FANG G H, MA X G, et al. Simulation analysis of crack cause of concrete overflow dam for Hadashan Hydro Project by 3-D FEM[J]. Syst Eng Procedia, 2012, 3: 48–54.
[14] HAMDERI M, GULER E, RAOUF A. An investigation on the formation of cracks at the corner turns of the modular block earth walls[J]. Int J Civ Eng, 2019, 17(2): 219–230.
[15] WU S X, HUANG D H, LIN F B, et al. Estimation of cracking risk of concrete at early age based on thermal stress analysis[J]. J Therm Anal Calorim, 2011, 105(1): 171–186.
[16] KWAK H G, HA S J, KIM J K. Non-structural cracking in RC walls[J]. Cem Concr Res, 2006, 36(4): 749–760.
[17] LI X D, YU Z P, CHEN K X, et al. Investigation of temperature development and cracking control strategies of mass concrete: A field monitoring case study[J]. Case Stud Constr Mater, 2023, 18: e02144.
[18] LI Y, NIE L, WANG B. A numerical simulation of the temperature cracking propagation process when pouring mass concrete[J]. Autom Constr, 2014, 37: 203–210.
[19] SHENG X W, XIAO S M, ZHENG W Q, et al. Experimental and finite element investigations on hydration heat and early cracks in massive concrete piers[J]. Case Stud Constr Mater, 2023, 18: e01926.
[20] WANG N, LUO K, PENG K, et al. Thermal deformation and microstructure characteristics of low-heat Portland cement-based concrete in a high plateau environment[J]. J Build Eng, 2022, 58: 105025.
[26] ZHANG Q L, WANG F, GAN X Q, et al. A field investigation into penetration cracks close to dam-to-pier interfaces and numerical analysis[J]. Eng Fail Anal, 2015, 57: 188–201.
[27] LIU Y F, NIE X, FAN J S, et al. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction[J]. Computer Aided Civil Eng, 2020, 35(5): 511–529.
[28] REGGIA A, SGOBBA S, MACOBATTI F, et al. Strengthening of a bridge pier with HPC: Modeling of restrained shrinkage cracking[J]. Key Eng Mater, 2016, 711: 1027–1034.
[29] JANG K, AN Y K, KIM B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer Aided Civ Eng, 2021, 36(1): 14–29.
[31] LI X F, FU Z, LUO Z. Effect of atmospheric pressure on air content and air void parameters of concrete[J]. Mag Concr Res, 2015, 67(8): 391–400.
[39] DUFFIE DECEASED J A, BECKMAN W A, BLAIR N. Solar engineering of thermal processes, photovoltaics and wind[M]. America: Wiley, 2020.
[40] SAETTA A, SCOTTA R, VITALIANI R. Stress analysis of concrete structures subjected to variable thermal loads[J]. J Struct Eng, 1995, 121(3): 446–457.
[42] ELBADRY M M, GHALI A. Temperature variations in concrete bridges[J]. J Struct Eng, 1983, 109(10): 2355–2374.
[44] NISHIZAWA T, OZEKI T, KATOH K, et al. Finite element model analysis of thermal stresses of thick airport concrete pavement slabs[J]. Transportation Research Record, 2009, 2095(1): 3–12.
[50] ALLICHE A. Damage model for fatigue loading of concrete[J]. Int J Fatigue, 2004, 26(9): 915–921.
[53] ONESCHKOW N. Fatigue behaviour of high-strength concrete with respect to strain and stiffness[J]. Int J Fatigue, 2016, 87: 38–49.
[54] LI Z L, SHANG H B, XIAO S P, et al. Effect of thermal fatigue on mechanical properties and microstructure of concrete in constant ambient humidity[J]. Constr Build Mater, 2023, 368: 130367.