[1] Zayats A V, Smolyaninov I I, Maradudin A A, et al. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3/4): 131-314.
[2] Zheludev N I. What diffraction limit?[J]. Nature Materials, 2008, 7(6): 420-422.
[3] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures[J]. Rev. of Modern Physics, 2010, 82(3): 2257.
[7] Karimi Y, Kaatuzian H, Tooghi A, et al. All-optical plasmonic switches based on Fano resonance in an X-shaped resonator coupled to parallel stubs for telecommunication applications[J]. Optik, 2021, 243: 167424.
[8] Shuai Y, Zhao D, Tian Z, et al. Double-layer Fano resonance photonic crystal filters[J]. Opt. Express, 2013, 21(21): 24582-24589.
[9] Zhao W, Leng X, Jiang Y. Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning[J]. Opt. Express, 2015, 23(5): 6858-6866.
[10] Guo Y, Huo Y, Niu Q, et al. Band-stop filter based on tunable Fano resonance and electromagnetically induced transparency in metal-dielectric-metal waveguide coupling systems[J]. Physica Scripta, 2020, 96(1): 015507.
[11] Yan S, Zhang M, Zhao X, et al. Refractive index sensor based on a metal-insulator-metal waveguide coupled with a symmetric structure[J]. Sensors, 2017, 17(12): 2879.
[12] Smith N V. Classical generalization of the Drude formula for the optical conductivity[J]. Phys. Rev. B, 2001, 64(15): 155106.
[13] Chen Z, Chen J, Yu L, et al. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator[J]. Plasmonics, 2015, 10: 131-137.
[14] Chao C T C, Chau Y F C, Chiang H P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications[J]. Results in Physics, 2021, 27: 104527.
[15] Zhang Y, Liu W, Li Z, et al. High-quality-factor multiple Fano resonances for refractive index sensing[J]. Opt. Lett., 2018, 43(8): 1842-1845.