[1] Pan L, Wang H B, Wu C M, et al. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries[J]. ACS Applied Materials and Interface, 2015, 7(29):16003-16010.
[3] Paulino J F, Busnardo N G, Afonso J C. Recovery of valuable elements from spent Li-batteries[J]. Journal of Hazardous Materials, 2008, 150(3):843-849.
[4] Barik S P, Prabaharan G., Kumar B. An innovative approach to recover the metal values from spent lithium-ion batteries[J]. Waste Management, 2016, 51(11):222-226.
[5] Wang X, Li W Z, Chen Z W, et al. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane Fuel Cell[J]. Journal of Power Sources, 2006, 158(1):154-159.
[6] Yu C Y, Hou H Y, Liu X X, et al. Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery[J]. International Journal of Hydrogen Energy, 2018, 43(6):3253-3260.
[9] Adolfsson K H, Lin C F, Hakkarainen M. Microwave assisted hydrothermal carbonization and solid state postmodification of carbonized polypropylene[J]. ACS Sustainable Chemistry and Engineering, 2018, 6, 11105-11114.
[10] Santos B P S, Almeida D, Marques M, et al. Degradation of polypropylene and polyethylene wastes over HZSM-5 and USY zeolites[J]. Catalysis Letters, 2019, 149, 798-812.
[11] Hou H Y, Yu C Y, Liu X X, et al. Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode[J]. Surface Innovations, 2018, 6(3):159-166.