• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1206004 (2022)
Xueyuan Ao, Qi Yang*, Xiaoxiao Dai, Junyu Wu..., Zhongzhong Wang, Yuanxiang Wang and Chen Liu|Show fewer author(s)
Author Affiliations
  • School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1206004 Cite this Article Set citation alerts
    Xueyuan Ao, Qi Yang, Xiaoxiao Dai, Junyu Wu, Zhongzhong Wang, Yuanxiang Wang, Chen Liu. Real-Time Free-Space Optical Communication Technology[J]. Chinese Journal of Lasers, 2022, 49(12): 1206004 Copy Citation Text show less
    References

    [1] Zhang X Y, Cui S, Liu D M et al. Performance analysis of multi-aperture coherent optical receiver for satellite-to-ground downlink[J]. Laser & Optoelectronics Progress, 56, 210101(2019).

    [2] Hua B C[D]. Research on structure and key technology of optical access network for multi-business convergence(2020).

    [3] Brown C L, Wilson S G, Cvijetic N et al. OPN01-4: WiMAX access using optical wireless technology with heterodyne detection in turbulent atmospheric channels[C], 10284983(2006).

    [4] Wu Y, Mei H P, Wei H L. Performance analysis of free-space optical communication system under joint channel conditions[J]. Laser & Optoelectronics Progress, 57, 050101(2020).

    [5] Wang Y[D]. Research on digital signal processing technology in free-space coherent optical communication system(2020).

    [6] de Souza Lopes C H, Lima E S, Pereira L A M et al. Non-standalone 5G NR fiber-wireless system using FSO and fiber-optics fronthauls[J]. Journal of Lightwave Technology, 39, 406-417(2021).

    [7] Cao M H, Wu X, Wang H Q et al. Performance of faster-than-Nyquist optical communication system under gamma-gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 47, 0906003(2020).

    [8] Zhou C, Yu X N, Jiang H L et al. Atmospheric turbulence suppression methods for near the earth wireless laser communication channels based on avalanche photodiode adaptive gain control[J]. Chinese Journal of Lasers, 49, 0406002(2022).

    [9] He S, Zhang P, Wei J et al. Analyses of coupling characteristics of space light to few-mode fiber for atmospheric laser communication[J]. Chinese Journal of Lasers, 48, 2306001(2021).

    [10] Wen H, Cao Y, Peng X F et al. MIMO polarization-coding method in free space optical communication[J]. Laser & Optoelectronics Progress, 58, 1906004(2021).

    [11] Wang B P, Yu J, Wang Y Z et al. Error-performance study of intensity modulation technology in atmospheric laser communication[J]. Laser & Optoelectronics Progress, 57, 230604(2020).

    [12] Liu Z C, You Q, Li X et al. A 2×4 90° optical hybrid for free-space coherent optical communication based on a birefringent crystal[C], ATh3D.1(2016).

    [13] Cao J T, Zhao X H, Liu W et al. Performance analysis of a coherent free space optical communication system based on experiment[J]. Optics Express, 25, 15299-15312(2017).

    [14] Lorences-Riesgo A, Guiomar F P, Sousa A N et al. 200 Gbit/s free-space optics transmission using a Kramers-Kronig receiver[C], 18618357(2019).

    [15] Cvijetic N, Qian D Y, Wang T. 10Gb/s free-space optical transmission using OFDM[C], 10063525(2008).

    [16] Zhou X[D]. Research on DSP algorithms of 100 Gbps PM-(D)QPSK optical coherent transmission system(2011).

    [17] Yu J J[M]. Principles and applications of digital signal processing algorithms in high-speed optical fiber communication: single carrier modulation technology. Volume 1(2018).

    Xueyuan Ao, Qi Yang, Xiaoxiao Dai, Junyu Wu, Zhongzhong Wang, Yuanxiang Wang, Chen Liu. Real-Time Free-Space Optical Communication Technology[J]. Chinese Journal of Lasers, 2022, 49(12): 1206004
    Download Citation