• Nano-Micro Letters
  • Vol. 16, Issue 1, 108 (2024)
Xiang Gao1,†, Shicheng Dai1,2,3,†, Yun Teng1,†, Qing Wang4..., Zhibo Zhang1, Ziyin Yang1, Minhyuk Park1, Hang Wang1, Zhe Jia5, Yunjiang Wang2,3 and Yong Yang1,6,*|Show fewer author(s)
Author Affiliations
  • 1Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon Hong Kong, People’s Republic of China
  • 2State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences Beijing, People’s Republic of China
  • 3School of Engineering Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
  • 4Laboratory for Microstructures, Institute of Materials, Shanghai University Shanghai, People’s Republic of China
  • 5School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University Nanjing, People’s Republic of China
  • 6Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon Hong Kong, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01324-5 Cite this Article
    Xiang Gao, Shicheng Dai, Yun Teng, Qing Wang, Zhibo Zhang, Ziyin Yang, Minhyuk Park, Hang Wang, Zhe Jia, Yunjiang Wang, Yong Yang. Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production[J]. Nano-Micro Letters, 2024, 16(1): 108 Copy Citation Text show less
    References

    [1] J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004).

    [2] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    [3] B. Huang, Z. Sun, G. Sun, Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities. eScience 2, 243–277 (2022).

    [4] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    [5] L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, e2006328 (2021).

    [6] J. Mahmood, F. Li, S.-M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441–446 (2017).

    [7] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    [8] C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15, 83 (2023).

    [9] L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15, 144 (2023).

    [10] J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li et al., Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 3, 773–782 (2018).

    [11] H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 (2018).

    [12] H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017).

    [13] X. Li, J. Yu, J. Jia, A. Wang, L. Zhao et al., Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019).

    [14] N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    [15] D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019).

    [16] J. Dendooven, R.K. Ramachandran, E. Solano, M. Kurttepeli, L. Geerts et al., Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nat. Commun. 8, 1074 (2017).

    [17] I.J. Hsu, Y.C. Kimmel, X. Jiang, B.G. Willis, J.G. Chen, Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063–1065 (2012).

    [18] Y. Da, Z. Tian, R. Jiang, G. Chen, Y. Liu et al., Single-atom Pt doping induced p-type to n-type transition in NiO nanosheets toward self-gating modulated electrocatalytic hydrogen evolution reaction. ACS Nano 17, 18539–18547 (2023).

    [19] Z. Chen, X. Li, J. Zhao, S. Zhang, J. Wang et al., Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 62, e202308686 (2023).

    [20] Y. Da, Z. Tian, R. Jiang, Y. Liu, X. Lian et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 66, 1389–1397 (2023).

    [21] L. Chen, Y. Huang, Y. Ding, P. Yu, F. Huang et al., Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 16, 12186–12195 (2023).

    [22] Z. Zeng, S. Küspert, S.E. Balaghi, H.E.M. Hussein, N. Ortlieb et al., Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction. Small 19, e2205885 (2023).

    [23] Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505–4509 (2019).

    [24] T. Wang, M. Park, Q. He, Z. Ding, Q. Yu et al., Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation. Cell. Rep. Phys. Sci. 1(11), 100235 (2020).

    [25] T. Wang, Z. Zhang, M. Park, Q. Yu, Y. Yang, Etching-free ultrafast fabrication of self-rolled metallic nanosheets with controllable twisting. Nano Lett. 21, 7159–7165 (2021).

    [26] T. Wang, Q. He, J. Zhang, Z. Ding, F. Li et al., The controlled large-area synthesis of two dimensional metals. Mater. Today 36, 30–39 (2020).

    [27] H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021).

    [28] J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014).

    [29] Q. Yu, J. Zhang, J. Li, T. Wang, M. Park et al., Strong, ductile, and tough nanocrystal-assembled freestanding gold nanosheets. Nano Lett. 22, 822–829 (2022).

    [30] M. Park, D. Li, T. Wang, B. Zhou, Y.Y. Li et al., Elasto-capillary manipulation of freestanding inorganic nanosheets: an implication for nano-manufacturing of low-dimensional structures. Adv. Mater. Interfaces 9, 2200355 (2022).

    [31] J. Zhang, Q. Yu, Q. Wang, J. Li, Z. Zhang et al., Strong yet ductile high entropy alloy derived nanostructured cermet. Nano Lett. 22, 7370–7377 (2022).

    [32] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    [33] S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    [34] J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo3S13]2- clusters. Nat. Chem. 6, 248–253 (2014).

    [35] Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, e2000385 (2020).

    [36] X. Zhang, Y. Yang, Y. Liu, Z. Jia, Q. Wang et al., Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities. Adv. Mater. 35, e2303439 (2023).

    [37] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    [38] C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki et al., Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures. Nanoscale 9, 11678–11684 (2017).

    [39] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    [40] R. Michalsky, Y.-J. Zhang, A.A. Peterson, Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 4, 1274–1278 (2014).

    [41] B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng et al., Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 (2019).

    [42] J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    [43] H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. (2023).

    [44] Y. Pu, Y. Niu, Y. Wang, S. Liu, B. Zhang, Statistical morphological identification of low-dimensional nanomaterials by using TEM. Particuology 61, 11–17 (2022).

    [45] J. Li, Y. Chen, Q. He, X. Xu, H. Wang et al., Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc. Natl. Acad. Sci. 119, 1–7 (2022).

    [46] G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591 (2020).

    [47] C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).

    [48] J. Kibsgaard, I. Chorkendorff, Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    [49] C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023).

    [50] M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017).

    [51] T. He, W. Wang, F. Shi, X. Yang, X. Li et al., Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    [52] K. Yan, T.A. Maark, A. Khorshidi, V.A. Sethuraman, A.A. Peterson et al., The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem. Intern. Ed. 55, 6175–6181 (2016).

    [53] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 364–364 (2016).

    [54] M. Erbi, H. Amara, R. Gatti, Tuning elastic properties of metallic nanoparticles by shape controlling: from atomistic to continuous models. ArXiv Preprint ArXiv: 2303.06995 (2023).

    [55] Q.F. He, J.G. Wang, H.A. Chen, Z.Y. Ding, Z.Q. Zhou et al., A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).

    [56] Y.F. Ye, C.T. Liu, Y. Yang, A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015).

    [57] D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechn. 11, 218–230 (2016).

    [58] J.-J. Wang, X.-P. Li, B.-F. Cui, Z. Zhang, X.-F. Hu et al., A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 40, 3019–3037 (2021).

    [59] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).

    [60] M. Luo, Y. Yang, Y. Sun, Y. Qin, C. Li et al., Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Mater. Today 23, 45–56 (2019).

    [61] S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu et al., Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv. Funct. Mater. 32, 2201726 (2022).

    [62] P. Chu, J. Finch, G. Bournival, S. Ata, C. Hamlett et al., A review of bubble break-up. Adv. Colloid Interface Sci. 270, 108–122 (2019).

    Xiang Gao, Shicheng Dai, Yun Teng, Qing Wang, Zhibo Zhang, Ziyin Yang, Minhyuk Park, Hang Wang, Zhe Jia, Yunjiang Wang, Yong Yang. Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production[J]. Nano-Micro Letters, 2024, 16(1): 108
    Download Citation