• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 238 (2016)
Xiaoxiao XUE1、* and Andrew M. WEINER1、2
Author Affiliations
  • 1School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
  • 2Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
  • show less
    DOI: 10.1007/s12200-016-0621-4 Cite this Article
    Xiaoxiao XUE, Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Frontiers of Optoelectronics, 2016, 9(2): 238 Copy Citation Text show less
    References

    [1] Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450(7173): 1214–1217

    [2] Del’Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J. Octave spanning tunable frequency comb from a microresonator. Physical Review Letters, 2011, 107(6): 063901

    [3] Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M, Gaeta A L. Octave-spanning frequency comb generation in a silicon nitride chip. Optics Letters, 2011, 36(17): 3398–3400

    [4] Levy J S, Gondarenko A, Foster M A, Turner-Foster A C, Gaeta A L, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photonics, 2010, 4(1): 37–40

    [5] Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E, Moss D J. CMOS-compatible integrated optical hyperparametric oscillator. Nature Photonics, 2010, 4(1): 41–45

    [6] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559

    [7] Papp S B, Del’Haye P, Diddams S A. Mechanical control of a microrod-resonator optical frequency comb. Physical Review X, 2013, 3(3): 031003

    [8] Savchenkov A A, Matsko A B, Ilchenko V S, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Physical Review Letters, 2008, 101(9): 093902

    [9] Grudinin I S, Baumgartel L, Yu N. Frequency comb from a microresonator with engineered spectrum. Optics Express, 2012, 20 (6): 6604–6609

    [10] Wang C Y, Herr T, Del’Haye P, Schliesser A, Hofer J, Holzwarth R, H nsch T W, Picqué N, Kippenberg T J. Mid-infrared optical frequency combs at 2.5 mm based on crystalline microresonators. Nature Communications, 2013, 4: 1345

    [11] Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L. Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator. Optical Engineering (Redondo Beach, Calif.), 2014, 53(12):122607

    [12] Jung H, Xiong C, Fong K Y, Zhang X, Tang H X. Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 2013, 38(15): 2810–2813

    [13] Hausmann B J M, Bulu I, Venkataraman V, Deotare P, Lon ar M. Diamond nonlinear photonics. Nature Photonics, 2014, 8(5): 369– 374

    [14] Griffith A G, Lau R K, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H, Yu M, Phare C T, Poitras C B, Gaeta A L, Lipson M. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 2015, 6: 6299

    [15] Levy J S, Saha K, Okawachi Y, Foster M, Gaeta A, Lipson M. Highperformance silicon-nitride-based multiple-wavelength source. IEEE Photonics Technology Letters, 2012, 24(16): 1375–1377

    [16] Wang P H, Ferdous F, Miao H, Wang J, Leaird D E, Srinivasan K, Chen L, Aksyuk V, Weiner A M. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Optics Express, 2012, 20(28): 29284– 29295

    [17] Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380

    [18] Pfeifle J, Coillet A, Henriet R, Saleh K, Schindler P, Weimann C, Freude W, Balakireva I V, Larger L, Koos C, Chembo Y K. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Physical Review Letters, 2015, 114(9): 093902

    [19] Savchenkov A A, Eliyahu D, Liang W, Ilchenko V S, Byrd J, Matsko A B, Seidel D, Maleki L. Stabilization of a Kerr frequency comb oscillator. Optics Letters, 2013, 38(15): 2636–2639

    [20] Papp S B, Beha K, Del’Haye P, Quinlan F, Lee H, Vahala K J, Diddams S A. Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10–14

    [21] Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D, Maleki L. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, 2015, 6: 7957

    [22] Xue X, Xuan Y, Kim H J, Wang J, Leaird D E, Qi M, Weiner A M. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. Journal of Lightwave Technology, 2014, 32 (20): 3557–3565

    [23] Nguyen T G, Shoeiby M, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Optics Express, 2015, 23(17): 22087–22097

    [24] Maiman T H. Stimulated optical radiation in ruby masers. Nature, 1960, 187(4736): 493–494

    [25] Blumenthal R H. Design of a microwave frequency light modulator. Proceedings of the IRE, 1962, 50(4): 452–456

    [26] Riesz R P. High speed semiconductor photodiodes. Review of Scientific Instruments, 1962, 33(9): 994–998

    [27] Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887

    [28] Seeds A J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628–4641

    [29] Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330

    [30] Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

    [31] Capmany J, Li G, Lim C, Yao J. Microwave Photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867

    [32] Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538

    [33] Capmany J, Doménech D, Mu oz P. Graphene integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3785–3796

    [34] Marpaung D, Pagani M, Morrison B, Eggleton B J. Nonlinear integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3421–3427

    [35] Optical Frequency Combs. http://www.nist.gov/public_affairs/ releases/frequency_combs.cfm

    [36] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston, MA, USA: Springer, 2005

    [37] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser & Photonics Reviews, 2014, 8(3): 368–393

    [38] Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750

    [39] Drever RWP, Hall J L, Kowalski F V, Hough J, Ford GM, Munley A J, Ward H. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, Lasers and Optics, 1983, 31 (2): 97–105

    [40] Black E D. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 2001, 69(1): 79–87

    [41] Herr T, Brasch V, Jost J D,Wang C Y, Kondratiev NM, Gorodetsky M L, Kippenberg T J. Temporal solitons in optical microresonators. Nature Photonics, 2014, 8(2): 145–152

    [42] Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M. Mode-locked dark pulse Kerr combs in normaldispersion microresonators. Nature Photonics, 2015, 9(9): 594–600

    [43] Arcizet O, Schliesser A, Del’Haye P, Holzwarth R, Kippenberg T J. Optical frequency comb generation in monolithic microresonators. In: Matsko A B, ed. Practical Applications of Microresonators in Optics and Photonics . Boca Raton, FL, USA: CRC press, 2009, 483–506

    [44] Wang P H, Xuan Y, Xue X, Liu Y. Frequency comb-enhanced coupling in silicon nitride microresonators. In: Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO), 2015

    [45] Ferdous F, Miao H, Leaird D E, Srinivasan K, Wang J, Chen L, Varghese L T, Weiner A M. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 2011, 5 (12): 770–776

    [46] Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L, Kippenberg T J. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, 6(7): 480–487

    [47] Papp S B, Del’Haye P, Diddams S A. Parametric seeding of a microresonator optical frequency comb. Optics Express, 2013, 21 (15): 17615–17624

    [48] Marian A, Stowe M C, Lawall J R, Felinto D, Ye J. United timefrequency spectroscopy for dynamics and global structure. Science, 2004, 306(5704): 2063–2068

    [49] Maric M, McFerran J J, Luiten A N. Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium. Physical Review A., 2008, 77(3): 032502

    [50] Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates CW, Diddams S A. Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 2011, 5(7): 425–429

    [51] Savchenkov A A, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S, Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Physical Review Letters, 2004, 93 (24): 243905

    [52] Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Optics Express, 2008, 16(6): 4130–4144

    [53] Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs. Optics Express, 2013, 21(23): 28862–28876

    [54] Matsko A B, Maleki L. Noise conversion in Kerr comb RF photonic oscillators. Journal of the Optical Society of America. B, Optical Physics, 2015, 32(2): 232–240

    [55] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology, 2006, 24(1): 201–229

    [56] Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54 (2): 832–846

    [57] Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586

    [58] Supradeepa V R, Long C M, Wu R, Ferdous F, Hamidi E, Leaird D E, Weiner A M. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6(3): 186–194

    [59] Song M, Long C M, Wu R, Seo D, Leaird D E, Weiner A M. Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs. IEEE Photonics Technology Letters, 2011, 23(21): 1618–1620

    [60] Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Transactions on Microwave Theory and Techniques, 2010, 58 (11): 3269–3278

    Xiaoxiao XUE, Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Frontiers of Optoelectronics, 2016, 9(2): 238
    Download Citation