• Chinese Optics Letters
  • Vol. 21, Issue 2, 021406 (2023)
Yang Li1, Xiulu Hao1, Yi An1, Yi Zhu2, Tianfu Yao1、*, Xianglong Zeng2、**, and Pu Zhou1
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/COL202321.021406 Cite this Article Set citation alerts
    Yang Li, Xiulu Hao, Yi An, Yi Zhu, Tianfu Yao, Xianglong Zeng, Pu Zhou. Hundred-watt level high-order mode all-fiberized random distributed feedback Raman fiber laser with high mode purity[J]. Chinese Optics Letters, 2023, 21(2): 021406 Copy Citation Text show less
    References

    [1] P. Lu, M. Shipton, A. Wang, S. Soker, Y. Xu. Adaptive control of waveguide modes in a two-mode-fiber. Opt. Express, 22, 2955(2014).

    [2] R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf. Effects of radial and tangential polarization in laser material processing. Phys. Procedia, 12, 21(2011).

    [3] W. Fang, R. Tao, Y. Zhang, H. Li, P. Jun, L. Xu. Adaptive modal gain controlling for a high-efficiency cylindrical vector beam fiber laser. Opt. Express, 27, 32649(2019).

    [4] M. Huang, J. Wu, J. Hong, H. Lei, C. Zhao, Y. Chen, D. Fan. High energy switchable pulsed high-order mode beams in a mode-locking Raman all-fiber laser with high efficiency. Opt. Express, 29, 40538(2021).

    [5] H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, J. Su, W. Chen, Y. Zhu. Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity. Appl. Phys. Express, 11, 122502(2018).

    [6] D. Mao, Y. Zheng, C. Zeng, H. Lu, C. Wang, H. Zhang, W. Zhang, T. Mei, J. Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers. Adv. Photonics, 3, 014002(2021).

    [7] W. Jian, C. S. Chen, L. Jun. Orbital angular momentum communications based on standard multi-mode fiber. APL Photonics, 6, 060804(2021).

    [8] H. Tong, G. Xie, Z. Qiao, Z. Qin, P. Yuan, J. Ma, L. Qian. Generation of a mid-infrared femtosecond vortex beam from an optical parametric oscillator. Opt. Lett., 45, 989(2020).

    [9] Z. Qiao, Z. Wan, G. Xie, J. Wang, L. Qian, D. Fan. Multi-vortex laser enabling spatial and temporal encoding. Photoni X, 1, 13(2020).

    [10] A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, L. Novotny. Surface plasmon interference excited by tightly focused laser beams. Opt. Lett., 32, 2535(2007).

    [11] G. Volpe, G. P. Singh, D. Petrov. Optical tweezers with cylindrical vector beams produced by optical fibers. Proc. SPIE, 5514, 283(2004).

    [12] D. N. Gupta, N. Kant, D. E. Kim, H. Suk. Electron acceleration to GeV energy by a radially polarized laser. Phys. Lett. A, 368, 402(2007).

    [13] H. Li, Y. Zhang, Z. Dong, J. Lv, C. Gu, P. Yao, L. Xu, R. Zhang, J. Su, W. Chen, Y. Zhu, Q. Zhan. A high-efficiency all-fiber laser operated in high-order mode using ring-core Yb-doped fiber. Ann. Phys., 531, 1900079(2019).

    [14] K. S. Abedin, R. Ahmad, A. M. Desantolo, D. J. Digiovanni. Reconversion of higher-order-mode (HOM) output from cladding-pumped hybrid Yb:HOM fiber amplifier. Opt. Express, 27, 8585(2019).

    [15] X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, Z. Liu. Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback. Laser Phys., 25, 095102(2015).

    [16] M. Zulkifli, K. Lau, F. Muhammad, M. Yasin. Dual-mode output in half open cavity random fibre laser. Opt. Commun., 430, 273(2019).

    [17] J. Tao, L. Wang, L. Zhang, L. Teng, Z. Zhang, R. Berko, L. Zhang, F. Pang, X. Zeng. Dynamic mode-switchable and wavelength-tunable Brillouin random fiber laser by a high-order mode pump. Opt. Express, 29, 34109(2021).

    [18] P. Steinvurzel, K. Tantiwanichapan, M. Goto, S. Ramachandran. Fiber-based Bessel beams with controllable diffraction-resistant distance. Opt. Lett., 36, 4671(2011).

    [19] J. Song, H. Xu, H. Wu, L. Huang, J. Xu, H. Zhang, P. Zhou. High power narrow linewidth LP11 mode fiber laser using mode-selective FBGs. Laser Phys. Lett., 15, 115101(2019).

    [20] B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, Q. Zhan. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Opt. Lett., 37, 464(2012).

    [21] L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, J. Chen. High power, cladding-pumped all-fiber laser with selective transverse mode generation property. Appl. Opt., 56, 4967(2017).

    [22] T. Liu, S. Chen, J. Hou. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair. Opt. Lett., 41, 5692(2016).

    [23] T. Wang, F. Shi, Y. Huang, J. Wen, Z. Luo, F. Pang, T. Wang, X. Zeng. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams. Opt. Express, 26, 11850(2018).

    [24] F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, X. Zeng. Method of generating femtosecond cylindrical vector beams using broadband mode converter. IEEE Photonics Technol. Lett., 29, 747(2017).

    [25] J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, L. Zhang. A 1-µm cylindrical vector beam fiber ring laser based on a mode selective coupler. IEEE Photonics Technol. Lett., 30, 765(2018).

    [26] S. Chen, W. Hu, Y. Xu, Y. Cai, Z. Wang, Z. Zhang. Mode-locked pulse generation from an all-FMF ring laser cavity. Chin. Opt. Lett., 17, 121405(2019).

    [27] C. Dong, J. Zou, H. Wang, H. Yao, X. Zeng, Y. Bu, Z. Luo. Visible-light all-fiber vortex lasers based on mode selective couplers. Chin. Phys. B, 29, 161(2020).

    [28] Y. Jung, Z. Li, N. Wong, J. Daniel, J. Sahu, S. Alam, D. Richardson. Spatial mode switchable, wavelength tunable erbium doped fiber laser incorporating a spatial light modulator. Optical Fiber Communications Conference, 1(2014).

    [29] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics, 8, 200(2016).

    [30] C. Tian, S. Yu, S. Cai, M. Lan, W. Gu. Fiber laser for on-demand mode generation in 1550 nm band. Photonics Res., 5, 256(2017).

    [31] D. Lin, J. Carpenter, Y. Feng, S. Jain, Y. Jung, Y. Feng, M. N. Zervas, D. J. Richardson. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun., 11, 3986(2020).

    [32] X. Ma, J. Ye, Y. Zhang, J. Xu, J. Wu, T. Yao, J. Leng, P. Zhou. Vortex random fiber laser with controllable orbital angular momentum mode. Photonics Res., 9, 266(2021).

    [33] R. Su, B. Yang, X. Xi, P. Zhou, X. Wang, Y. Ma, X. Xu, J. Chen. 500 W level MOPA laser with switchable output modes based on active control. Opt. Express, 25, 23275(2017).

    [34] Y. You, G. Bai, X. Zou, X. Li, M. Su, H. Wang, Z. Quan, M. Liu, J. Zhang, Q. Li, H. Shen, Y. Qi, B. He, J. Zhou. A 1.4-kW mode-controllable fiber laser system. J. Light. Technol., 39, 2536(2021).

    [35] J. Xu, L. Zhang, X. Liu, L. Zhang, J. Lu, L. Wang, X. Zeng. Dynamic vortex mode-switchable erbium-doped Brillouin laser pumped by high-order mode. Opt. Lett., 46, 468(2021).

    [36] W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, J. Zhao. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Opt. Lett., 41, 5082(2016).

    [37] X. Zhang, W. Zhang, C. Li, D. Mao, F. Gao, L. Huang, D. Yang, T. Mei, J. Zhao. All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating. J. Opt., 20, 075608(2018).

    [38] H. Wu, J. Xu, L. Huang, X. Zeng, P. Zhou. High-power fiber laser with real-time mode switchability. Chin. Opt. Lett., 20, 021402(2022).

    [39] Y. Yang, Y. Li, Y. Huang, A. W. Poon. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt. Express, 22, 22172(2014).

    [40] V. R. Supradeepa, Y. Feng, J. W. Nicholson. Raman fiber lasers. J. Opt., 19, 023001(2017).

    [41] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Haraper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, E. V. Podivilov. Random distributed feedback fibre laser. Nat. Photonics, 4, 231(2010).

    [42] C. Jocher, C. Jauregui, M. Becker, M. Rothhardt, J. Limpert, A. Tünnermann. An all-fiber Raman laser for cylindrical vector beam generation. Laser Phys. Lett., 10, 125108(2013).

    [43] R. Ma, J. Li, J. Guo, H. Wu, H. Zhang, B. Hu, Y. Rao, W. Zhang. High-power low spatial coherence random fiber laser. Opt. Express, 27, 8738(2019).

    [44] W. Cheng, J. Haus, Q. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express, 17, 17829(2009).

    [45] H. Wu, B. Han, Z. Wang, G. Genty, G. Feng, H. Liang. Temporal ghost imaging with random fiber lasers. Opt. Express, 28, 9957(2020).

    [46] J. Lv, H. Li, Y. Zhang, R. Tao, Z. Dong, C. Gu, P. Yao, Y. Zhu, W. Chen, Q. Zhan, L. Xu. Few-mode random fiber laser with a switchable oscillating spatial mode. Opt. Express, 28, 38973(2020).

    [47] J. Blake, H. Engan, H. Shaw. Analysis of intermodal coupling in a two-mode fiber with periodic microbends. Opt. Lett., 12, 281(1987).

    [48] A. Engsarkar, J. Pedrazzani, J. Judkins, P. Lemaire, N. Bergano, C. Davidson. Long-period fiber-grating based gain equalizers. Opt. Lett., 21, 336(1996).

    [49] M. Jiang, H. Wu, Y. An, T. Hou, Q. Chang, L. Huang, J. Li, R. Su, P. Zhou. Fiber laser development enabled by machine learning: review and prospect. PhotoniX, 3, 16(2022).

    [50] L. Huang, J. Leng, P. Zhou, S. Guo, H. Lu, X. Cheng. Adaptive mode control of a few-mode fiber by real-time mode decomposition. Opt. Express, 23, 28082(2015).

    [51] J. Wang, R. Chen, J. Yao, H. Ming, A. Wang, Q. Zhan. Random distributed feedback fiber laser generating cylindrical vector beams. Phys. Rev. Appl., 11, 044051(2019).

    Data from CrossRef

    [1] Yang Li, Haoguang Yao, Chenchen Fan, Xiulu Hao, Tianfu Yao, Pu Zhou, Xianglong Zeng. Mode-modulation-induced high power dual-wavelength generation in a random distributed feedback Raman fiber laser. Optics Express, 31, 11508(2023).

    Yang Li, Xiulu Hao, Yi An, Yi Zhu, Tianfu Yao, Xianglong Zeng, Pu Zhou. Hundred-watt level high-order mode all-fiberized random distributed feedback Raman fiber laser with high mode purity[J]. Chinese Optics Letters, 2023, 21(2): 021406
    Download Citation