[1] ZHANG B, SHEN L, ZHENG L, et al. Solution-processed bulk heterojunction broadband photodetectors based on perovskites incorporated with PbSe quantum dots[J]. Organ Electron, 2022, 101: 106410.
[2] CHENG C, WANG F, CHENG X. PbSe quantum-dot-doped broadband fiber amplifier based on sodium-aluminum-borosilicate- silicate glass[J]. Opt Laser Technol, 2020, 122: 105812.
[3] SONG J, FENG W, REN Y, et al. Columnar Te-doped-PbSe thin films on glass for infrared photoelectric detection[J]. Vacuum, 2018, 155: 1-6.
[4] NAG O K, MUROSKI M E, FIELD L D, et al. In situ self-assembly of quantum dots at the plasma membrane mediates energy transfer-based activation of channelrhodopsin[J]. Part Part Syst Charact, 2021, 38(7): 2170014.
[5] NAGAOKA Y, TAN R, LI R, et al. Superstructures generated from truncated tetrahedral quantum dots[J]. Nature, 2018, 561(7723): 378-382.
[6] CHENG C, HU N, CHENG X. Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic [J]. Opt Commun, 2017, 382: 470-476.
[7] MALYAREVICH A M, YUMASHEV K V, LIPOVSKII A A. Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasers[J]. J Appl Phys, 008, 103(8): 4.
[8] CHOI J J, LIM Y F, SANTIAGO-BERRIOS M B, et al. PbSe nanocrystal excitonic solar cells[J]. Nano Lett, 2009, 9(11): 3749- 3755.
[9] VETCHINNIKOV M P, LIPATIEV A S, YU S G, et al. Direct femtosecond laser-induced formation of CdS quantum dots inside silicate glass[J]. Opt Lett, 2018, 43(11): 2519-2522.
[10] SHAO X, WANG J, HAN J, et al. Growth kinetics and optical properties of PbSe quantum dots in dual-phase lithium-aluminum- silicate glass ceramic[J]. J Eur Ceram Soc, 2020, 40(12): 4122- 4128.
[11] JOSHI S, SEN S, OCAMPO P C. Nucleation and growth kinetics of PbS quantum dots in oxide glass: Spectroscopic and microscopic studies in the dilute range[J]. J Phys Chem C, 2007, 111(11): 4105-4110.
[12] WANG J, ZHANG W, LIU C, et al. Growth of lead selenide quantum dots in silicate glasses[J]. J Non-Cryst Solids, 2017, 475: 44-47.
[13] BORRELLI N F, SMITH D W. Quantum confinement of PbS microcrystals in glass[J]. J Non-Cryst Solids, 1994, 180(1): 25-31.
[14] LIPOVSKII A, KOLOBKOVA E, PETRIKOV V, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass[J]. Appl Phys Lett, 1997, 71(23): 3406-3408.
[15] WANG J, ZHANG JH, LIU C, et al. Germanosilicate glasses containing PbSe quantum dots for mid-infrared luminescence[J]. J Non-Cryst Solids, 2016, 431: 79-82.
[16] BELAY, BREHANE, TESFAMARIAM, et al. Enhancement of PbSe QDs formation with B2O3 content in borosilicate glasses[J]. J Non- Cryst Solids, 2018, 480: 107-110.
[17] ABELSON A, QIAN C, SALK T, et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice[J]. Nat Mater, 2020, 19(1): 49-55.
[18] DAZ-GONZLEZ M, ESCOSURA-MUIZ A, FERNANDEZ- ARGüELLES M, et al. Quantum dot bioconjugates for diagnostic applications[J]. Topics Curr Chem, 2020, 378: 133-176.
[19] MOON H, LEE C, LEE W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications[J]. Adv Mater, 2019, 31(34): 1804294.
[21] DONG G, WU B, ZHANG F, et al. Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses[J]. J Alloys Compd, 2011, 509(38): 9335-9939.
[22] YIN Q, ZHANG J, LIU C, et al. Dual-band photoluminescence of lead selenide quantum dots doped oxyfluoride glass-ceramics containing BaF2 nanocrystals[J]. J Non-Cryst Solids, 2014, 385: 136-141.
[23] PENG X, SCHLAMP M C, KADAVANICH A V. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. J Am Chem Soc, 1997, 119(30): 7019-7029.
[24] PARK W J, KIM M G, KIM J E, et al. Role of Nd3+ ions on the nucleation and growth of PbS quantum dots (QDs) in silicate glasses [J]. J Am Ceram Soc, 2017, 100(7): 2879-2884.
[25] KIM M A, KWON Y K, LIU C, et al. Lead sulfide quantum dots in glasses containing rare-earth ions[J]. J Non-Cryst Solids, 2014, 383: 173-175.
[26] PARK W J, JU E K, LEE H J, et al. Atom probe tomographic imaging of PbS quantum dot formation on neodymium clusters in silicate glasses[J]. Scient Rep, 2019, 9(1): 1-7.
[27] WANG W, XIAO Y, ZHOU B, et al. Quantum-dots-precipitated rare-earth-doped glass for ultra-broadband mid-infrared emissions[J]. J Am Ceram Soc, 2019, 102(4): 1560-1565.
[28] LOURENCO S A, DANTAS N O, SILVA R S. Growth kinetic on the optical properties of the Pb1xMnxSe nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration[J]. Phys Chem Chem Phys, 2012, 14(31): 11040-11047.
[29] RASTRELLO L R, GUIMARES E V, SILVA M, et al. Effect of thermal annealing and sp-d exchange interaction in the optical properties of Mn2+-doped PbS nanocrystals embedded in a glass matrix[J]. J Lumin, 2020, 222: 117144.
[30] FANG X M, NAMJOU K, CHAO I, et al. Molecular beam epitaxy of PbSrSe and PbSe/PbSrSe multiple quantum well structures for use in midinfrared light emitting devices[J]. J Vacuum Sci Technol B, 2000, 18(3): 1720-1723.
[31] BEARD M C, KNUTSEN K P, YU P, et al. Multiple exciton generation in colloidal silicon nanocrystals[J]. Nano Lett, 2007, 7(8): 2506-2512.
[33] WANG J, LIU C, PARK W, et al. Band gap tuning of PbSe quantum dots by SrO addition in silicate glasses[J]. J Non-Cryst Solids, 2016, 452: 40-44.
[34] ZHANG W, WANG J, LIU C, et al. Photodarkening and Anti-Stokes Photoluminescence from PbSe and Sr2+ -doped PbSe quantum dots in silicate glasses[J]. J Am Ceram Soc, 2019, 102(6): 3368-3377.
[35] ZHANG J, LIU C, HEO J. Mid-infrared luminescence from Sn- modified PbSe quantum dots in silicate glasses[J]. J Non-Cryst Solids, 2016, 431: 93-96.
[36] XIAO W, XU K, LIU C, et al. Formation of core/shell PbS/Na2SrSi2O6 nanocrystals in glass[J]. Opt Mater Express, 2016, 6(2): 578-586.
[38] HAN N, LIU C, ZHANG J, et al. Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur[J]. J Non-Cryst Solids, 2014, 391: 39-42.
[39] LIU C, HEO J. Lead chalcogenide quantum dot-doped glasses for photonic devices[J]. Int J Appl Glass Sci, 2013, 4(3): 163-73.
[41] HUANG X, FANG Z, PENG Z, et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers[J]. Opt Express, 2017, 25(17): 19691-19700.
[42] HUANG X, FANG Z, KANG S, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. J Mater Chem, 2017, 5(31): 7927-7934.
[43] TAMULAITIS G, GULBINAS V, KODIS G, et al. Optical nonlinearities of glass doped with PbS nanocrystals[J]. J Appl Phys, 2000, 88(1): 178-182.
[44] WUNDKE K, AUXIER J, SCHLZGEN A, et al. Room-temperature gain at 1.3 μm in PbS-doped glasses[J]. Appl Phys Lett, 1999, 75(20): 3060-3062.