• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 4, 1046 (2022)
HAN Jianjun*, ZHANG Jicheng, LIU Hanyi, LIU Yingrui..., ZHANG Zhanmeng, WANG Jing, LIU Chao, RUAN Jian and LI Luyao|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20211047 Cite this Article
    HAN Jianjun, ZHANG Jicheng, LIU Hanyi, LIU Yingrui, ZHANG Zhanmeng, WANG Jing, LIU Chao, RUAN Jian, LI Luyao. Controllable Growth of Lead Chalcogenide Quantum Dots in Glasses and Their Optical Properties[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1046 Copy Citation Text show less
    References

    [1] ZHANG B, SHEN L, ZHENG L, et al. Solution-processed bulk heterojunction broadband photodetectors based on perovskites incorporated with PbSe quantum dots[J]. Organ Electron, 2022, 101: 106410.

    [2] CHENG C, WANG F, CHENG X. PbSe quantum-dot-doped broadband fiber amplifier based on sodium-aluminum-borosilicate- silicate glass[J]. Opt Laser Technol, 2020, 122: 105812.

    [3] SONG J, FENG W, REN Y, et al. Columnar Te-doped-PbSe thin films on glass for infrared photoelectric detection[J]. Vacuum, 2018, 155: 1-6.

    [4] NAG O K, MUROSKI M E, FIELD L D, et al. In situ self-assembly of quantum dots at the plasma membrane mediates energy transfer-based activation of channelrhodopsin[J]. Part Part Syst Charact, 2021, 38(7): 2170014.

    [5] NAGAOKA Y, TAN R, LI R, et al. Superstructures generated from truncated tetrahedral quantum dots[J]. Nature, 2018, 561(7723): 378-382.

    [6] CHENG C, HU N, CHENG X. Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic [J]. Opt Commun, 2017, 382: 470-476.

    [7] MALYAREVICH A M, YUMASHEV K V, LIPOVSKII A A. Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasers[J]. J Appl Phys, 008, 103(8): 4.

    [8] CHOI J J, LIM Y F, SANTIAGO-BERRIOS M B, et al. PbSe nanocrystal excitonic solar cells[J]. Nano Lett, 2009, 9(11): 3749- 3755.

    [9] VETCHINNIKOV M P, LIPATIEV A S, YU S G, et al. Direct femtosecond laser-induced formation of CdS quantum dots inside silicate glass[J]. Opt Lett, 2018, 43(11): 2519-2522.

    [10] SHAO X, WANG J, HAN J, et al. Growth kinetics and optical properties of PbSe quantum dots in dual-phase lithium-aluminum- silicate glass ceramic[J]. J Eur Ceram Soc, 2020, 40(12): 4122- 4128.

    [11] JOSHI S, SEN S, OCAMPO P C. Nucleation and growth kinetics of PbS quantum dots in oxide glass: Spectroscopic and microscopic studies in the dilute range[J]. J Phys Chem C, 2007, 111(11): 4105-4110.

    [12] WANG J, ZHANG W, LIU C, et al. Growth of lead selenide quantum dots in silicate glasses[J]. J Non-Cryst Solids, 2017, 475: 44-47.

    [13] BORRELLI N F, SMITH D W. Quantum confinement of PbS microcrystals in glass[J]. J Non-Cryst Solids, 1994, 180(1): 25-31.

    [14] LIPOVSKII A, KOLOBKOVA E, PETRIKOV V, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass[J]. Appl Phys Lett, 1997, 71(23): 3406-3408.

    [15] WANG J, ZHANG JH, LIU C, et al. Germanosilicate glasses containing PbSe quantum dots for mid-infrared luminescence[J]. J Non-Cryst Solids, 2016, 431: 79-82.

    [16] BELAY, BREHANE, TESFAMARIAM, et al. Enhancement of PbSe QDs formation with B2O3 content in borosilicate glasses[J]. J Non- Cryst Solids, 2018, 480: 107-110.

    [17] ABELSON A, QIAN C, SALK T, et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice[J]. Nat Mater, 2020, 19(1): 49-55.

    [18] DAZ-GONZLEZ M, ESCOSURA-MUIZ A, FERNANDEZ- ARGüELLES M, et al. Quantum dot bioconjugates for diagnostic applications[J]. Topics Curr Chem, 2020, 378: 133-176.

    [19] MOON H, LEE C, LEE W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications[J]. Adv Mater, 2019, 31(34): 1804294.

    [21] DONG G, WU B, ZHANG F, et al. Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses[J]. J Alloys Compd, 2011, 509(38): 9335-9939.

    [22] YIN Q, ZHANG J, LIU C, et al. Dual-band photoluminescence of lead selenide quantum dots doped oxyfluoride glass-ceramics containing BaF2 nanocrystals[J]. J Non-Cryst Solids, 2014, 385: 136-141.

    [23] PENG X, SCHLAMP M C, KADAVANICH A V. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. J Am Chem Soc, 1997, 119(30): 7019-7029.

    [24] PARK W J, KIM M G, KIM J E, et al. Role of Nd3+ ions on the nucleation and growth of PbS quantum dots (QDs) in silicate glasses [J]. J Am Ceram Soc, 2017, 100(7): 2879-2884.

    [25] KIM M A, KWON Y K, LIU C, et al. Lead sulfide quantum dots in glasses containing rare-earth ions[J]. J Non-Cryst Solids, 2014, 383: 173-175.

    [26] PARK W J, JU E K, LEE H J, et al. Atom probe tomographic imaging of PbS quantum dot formation on neodymium clusters in silicate glasses[J]. Scient Rep, 2019, 9(1): 1-7.

    [27] WANG W, XIAO Y, ZHOU B, et al. Quantum-dots-precipitated rare-earth-doped glass for ultra-broadband mid-infrared emissions[J]. J Am Ceram Soc, 2019, 102(4): 1560-1565.

    [28] LOURENCO S A, DANTAS N O, SILVA R S. Growth kinetic on the optical properties of the Pb1xMnxSe nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration[J]. Phys Chem Chem Phys, 2012, 14(31): 11040-11047.

    [29] RASTRELLO L R, GUIMARES E V, SILVA M, et al. Effect of thermal annealing and sp-d exchange interaction in the optical properties of Mn2+-doped PbS nanocrystals embedded in a glass matrix[J]. J Lumin, 2020, 222: 117144.

    [30] FANG X M, NAMJOU K, CHAO I, et al. Molecular beam epitaxy of PbSrSe and PbSe/PbSrSe multiple quantum well structures for use in midinfrared light emitting devices[J]. J Vacuum Sci Technol B, 2000, 18(3): 1720-1723.

    [31] BEARD M C, KNUTSEN K P, YU P, et al. Multiple exciton generation in colloidal silicon nanocrystals[J]. Nano Lett, 2007, 7(8): 2506-2512.

    [33] WANG J, LIU C, PARK W, et al. Band gap tuning of PbSe quantum dots by SrO addition in silicate glasses[J]. J Non-Cryst Solids, 2016, 452: 40-44.

    [34] ZHANG W, WANG J, LIU C, et al. Photodarkening and Anti-Stokes Photoluminescence from PbSe and Sr2+ -doped PbSe quantum dots in silicate glasses[J]. J Am Ceram Soc, 2019, 102(6): 3368-3377.

    [35] ZHANG J, LIU C, HEO J. Mid-infrared luminescence from Sn- modified PbSe quantum dots in silicate glasses[J]. J Non-Cryst Solids, 2016, 431: 93-96.

    [36] XIAO W, XU K, LIU C, et al. Formation of core/shell PbS/Na2SrSi2O6 nanocrystals in glass[J]. Opt Mater Express, 2016, 6(2): 578-586.

    [38] HAN N, LIU C, ZHANG J, et al. Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur[J]. J Non-Cryst Solids, 2014, 391: 39-42.

    [39] LIU C, HEO J. Lead chalcogenide quantum dot-doped glasses for photonic devices[J]. Int J Appl Glass Sci, 2013, 4(3): 163-73.

    [41] HUANG X, FANG Z, PENG Z, et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers[J]. Opt Express, 2017, 25(17): 19691-19700.

    [42] HUANG X, FANG Z, KANG S, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. J Mater Chem, 2017, 5(31): 7927-7934.

    [43] TAMULAITIS G, GULBINAS V, KODIS G, et al. Optical nonlinearities of glass doped with PbS nanocrystals[J]. J Appl Phys, 2000, 88(1): 178-182.

    [44] WUNDKE K, AUXIER J, SCHLZGEN A, et al. Room-temperature gain at 1.3 μm in PbS-doped glasses[J]. Appl Phys Lett, 1999, 75(20): 3060-3062.

    HAN Jianjun, ZHANG Jicheng, LIU Hanyi, LIU Yingrui, ZHANG Zhanmeng, WANG Jing, LIU Chao, RUAN Jian, LI Luyao. Controllable Growth of Lead Chalcogenide Quantum Dots in Glasses and Their Optical Properties[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1046
    Download Citation