• Chinese Journal of Lasers
  • Vol. 42, Issue 9, 903009 (2015)
Zhang Xingquan*, Zhang Yan, Duan Shiwei, Huang Zhilai, Feng Jianyou, and Wang Biao
DOI: 10.3788/cjl201542.0903009 Cite this Article Set citation alerts
Zhang Xingquan, Zhang Yan, Duan Shiwei, Huang Zhilai, Feng Jianyou, Wang Biao. Numerical Simulation of Dynamic Response of Round Rod Subjected to Laser Shocking[J]. Chinese Journal of Lasers, 2015, 42(9): 903009 Copy Citation Text show less
References

[1] Rodopoulos C A, Romero J S, Curtis S A. Effect of controlled shot peening and laser shock peening on the fatigue performance of 2024-T351 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2003, 12(4): 414-419.

[2] Braisted W, Brockman R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7): 719-724.

[3] Peyre P, Sollier A, Chaieb I, et al.. FEM simulation of residual stresses induced by laser peening[J]. The European Physical Journal Applied Physics, 2003, 23(2): 83-88.

[4] Wang Wei, Zhang Jie, Senecha V K. Numerical simulation study of laser-driven shockwave propagation in planar Al foil targets[J]. Acta Physica Sinica, 2001, 50(4): 741-747.

[5] Li Zhiyong, Zhu Wenhui, Cheng Jingyi, et al.. Experimental study of high-power pulsed laser induced shock waves in aluminum targets[J]. Chinese J Lasers, 1997, 24(3): 259-262.

[6] Gulshan S, Ramana V G, David S S. Modeling and parameter design of a laser shock peening process[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2011, 12(5): 233-253.

[7] Ju H K, Yun J K, Joung S K. Effects of simulation parameters on residual stresses for laser shock peening finite element analysis[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2025-2034.

[8] Hu Yongxiang, Yao Zhenqiang, Hu Jun. Numerical simulation of residual stress field for laser shock processing[J]. Chinese J Lasers, 2006, 33(6): 846-851.

[9] Cao Yupeng, Feng Aixin, Xue Wei, et al.. Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy surface[J]. Chinese J Lasers, 2014, 41(9): 0903004.

[10] Zhang Qinglai, Wang Rong, Zhang Bingxin, et al.. Effect of laser shock processing on mechanical properties and mesostructures of AZ31 magnesium alloy[J]. Chinese J Lasers, 2015, 42(3): 0303001.

[11] Fabbro R, Fournier J, Ballard P, et al.. Physical study of laser-produced plasma in confined geometry[J]. J Appl Phys, 1990, 68(2): 775-784.

[12] Hong X, Wang S B, Guo D H, et al.. Confining medium and absorptive overlay: Their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering, 1998, 29(6): 447-455.

[13] Gordon R J, William H C. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the Seventh International Symposium on Ballistics, 1983: 541-547.

[14] Wang Lili. Foundation of Stress Waves[M]. Beijing: National Defense Industry Press, 1985.

[15] Zhang X Q, Chen L S, Yu X L, et al.. Effect of laser shock processing on fatigue life of fastener hole[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 969-974.

[16] Zhang Xingquan, He Guangde, Qi Xiaoli, et al.. Investigation on contact fatigue strength of gear affected by laser shock processing [J]. Chinese J Lasers, 2010, 37(12): 3187-3191.

CLP Journals

[1] Li Min, Ji Kankan, Liu Tao, Duan Shiwei, Tong Jinyu, Chen Bin, Zhang Xingquan. Laser Shock Forming of 2024-T351 Aluminum Alloy Sheets Supported by Rubber[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101406

[2] Cao Yupeng, Zhou Dongcheng, Feng Aixin, Hua Guoran, Jiang Suzhou. Formation Mechanism of Residual Stress Hole on 7050 Aluminum Alloy Sheet Sample Under Laser Shock[J]. Chinese Journal of Lasers, 2016, 43(11): 1102003

[3] Cao Yupeng, Xu Ying, Feng Aixin, Hua Guoran, Zhou Dongcheng, Zhang Jinchao. Experimental Study of Residual Stress Formation Mechanism of 7050 Aluminum Alloy Sheet by Laser Shock Processing[J]. Chinese Journal of Lasers, 2016, 43(7): 702008

[4] Zhang Xingquan, Ji Kankan, Wang Huiting, Qi Xiaoli, Chen Bin, Tong Jinyu, Fang Guangwu. Numerical simulation of residual stresses induced by laser shock on the circumference surface of round rod[J]. Infrared and Laser Engineering, 2019, 48(7): 706004

[5] Wang Jingxue, Zhang Yan, Zhang Xingquan, Qi Xiaoli, Pei Shanbao, Chen Bin. Numerical Simulation of Residual Stress Field Induced in Round Rod Part Affected by Laser Parameters[J]. Chinese Journal of Lasers, 2016, 43(8): 802007

[6] Ji Kankan, Zhang Xingquan, Deng Lei, Huang Zhilai, Duan Shiwei, Qi Xiaoli, Chen Bin. Numerical Simulation on Deformation Velocity of 316L Stainless Steel Target Driven by Intense Lasers[J]. Chinese Journal of Lasers, 2016, 43(11): 1102007

Zhang Xingquan, Zhang Yan, Duan Shiwei, Huang Zhilai, Feng Jianyou, Wang Biao. Numerical Simulation of Dynamic Response of Round Rod Subjected to Laser Shocking[J]. Chinese Journal of Lasers, 2015, 42(9): 903009
Download Citation