• Frontiers of Optoelectronics
  • Vol. 11, Issue 2, 107 (2018)
Xiupu ZHANG
Author Affiliations
  • iPhotonics Labs, Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, H3G1M8, Canada
  • show less
    DOI: 10.1007/s12200-018-0802-4 Cite this Article
    Xiupu ZHANG. Broadband linearization for 5G fronthaul transmission[J]. Frontiers of Optoelectronics, 2018, 11(2): 107 Copy Citation Text show less
    References

    [1] Third generation partnership project (3GPP) releases 10-15, 2011–2017

    [2] Asai T. 5G radio access network and its requirements on mobile optical networks. In: Proceedings of International Conference on Optical Network Design and Modeling (ONDM). Pisa, Italy, 2015, 7–11

    [3] Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52(2): 74–80

    [4] Liu X, Zeng H, Chand N, Effenberger F. Efficient mobile fronthaul via DSP-based channel aggregation. Journal of Lightwave Technology, 2016, 34(6): 1556–1564

    [5] Liu X, Effenberger F. Emerging optical access network technologies for 5G wireless. Journal of Optical Communications and Networking, 2016, 8(12): B70–B79

    [6] Zeng H, Liu X, Megeed S, Chand N, Effenberger F. Real-time demonstration of CPRI compatible efficient mobile fronthaul using FPGA. Journal of Lightwave Technology, 2017, 35(6): 1241–1247

    [7] Kani J, Terada J, Suzuki K, Otaka A. Solutions for future mobile fronthaul and access network convergence. Journal of Lightwave Technology, 2017, 35(3): 527–534

    [8] Liu X, Zeng H, Chand N, Effenberger F. CPRI compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI equivalent data rate in a single 10-GHz bandwidth IMDD channel. In: Proceedings of Optical Fiber Communications (OFC) Conference. Anaheim, CA, 2016, Paper W1H.3

    [9] Zhang X, Zhu R, Shen D, Liu T. Linearization technologies for broadband radio-over-fiber transmission systems. MDPI Photonics, 2014, 1(1): 455–472

    [10] Shen Y, Hraimel B, Zhang X, Cowan G, Wu K, Liu T. A novel analog broadband RF predistortion circuit to linearize electroabsorption modulator in multiband OFDM ultra-wideband radio over fiber systems. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3327–3335

    [11] Zhu R, Zhang X, Shen D, Liu T. Broadband analog predistortion circuit using zero bias detector diodes for radio over fiber systems. IEEE Photonics Technology Letters, 2013, 25(21): 2101–2104

    [12] Zhu R, Zhang X, Shen D, Zhang Y. Ultra broadband predistortion circuit for radio-over-fiber transmission systems. Journal of Lightwave Technology, 2016, 34(22): 5137–5145

    [13] Zhang X, Saha S, Zhu R, Liu T, Shen D. Analog pre-distortion circuit for radio over fiber transmission. IEEE Photonics Technology Letters, 2016, 28(22): 2541–2544

    [14] Wood J. Behavioral Modeling and Linearization of RF Power Amplifiers. Boston: Artech House, 2014

    [15] Tang W. Envelope-assisted RF digital predistortion for broadband radio-over-fiber transmission with RF amplifier. Dissertation for the Master Degree. Montreal: Concordia University, 2017

    [16] Bassam S, Helaoui M, Ghannouchi F. 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2547–2553

    [17] Xie X. Combined linearization of both analog and digital predistortion for broadband radio over fiber transmission. Dissertation for the Master Degree. Montreal: Concordia University, 2017

    [18] Masella B, Hraimel B, Zhang X. Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator. Journal of Lightwave Technology, 2009, 27(15): 3034–3041

    [19] Hraimel B, Zhang X. Characterization and compensation of AMAM and AM-PM distortion in mixed polarization radio over fiber systems. In: Proceedings of IEEE/MTT-S International Microwave Symposium Digest . Montreal, QC, 2012, 1–3

    [20] Hraimel B, Zhang X, Liu T, Xu T, Nie Q, Shen D. Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive X-cut Mach-Zehnder modulator. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10): 3328–3338

    [21] Hraimel B, Zhang X, Jiang W, Wu K, Liu T, Xu T, Nie Q, Xu K. Experimental demonstration of mixed-polarization to linearize electro-absorption modulators in radio-over-fiber links. IEEE Photonics Technology Letters, 2011, 23(4): 230–232

    [22] Hraimel B, Zhang X. Performance improvement of radio-over fiber links using mixed-polarization electro-absorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3239–3248

    [23] Hraimel B, Zhang X. Suppression of radio over fiber system nonlinearity using a semiconductor optical amplifier and mixed polarization. In: Proceedings of Optical Fiber Communication (OFC) Conference. Anaheim, CA, 2013, Paper JTh2A.59

    [24] Chen X, Li W, Yao J. Microwave photonic link with improved dynamic range using a polarization modulator. IEEE Photonics Technology Letters, 2013, 25(14): 1373–1376

    [25] Li W, Yao J. Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop. Optics Express, 2013, 21(13): 15692–15697

    [26] Zhu R, Shen D, Zhang X, Liu T. Analysis of dual wavelength linearization technique for radio-over-fiber systems with electroabsorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 2692–2702

    Xiupu ZHANG. Broadband linearization for 5G fronthaul transmission[J]. Frontiers of Optoelectronics, 2018, 11(2): 107
    Download Citation