• Photonics Research
  • Vol. 9, Issue 10, 2052 (2021)
Jun He1、2, Jia He1、2, Xizhen Xu1、2, Bin Du1、2, Baijie Xu1、2, Changrui Liao1、2, Zhiyong Bai1、2, and Yiping Wang1、2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1364/PRJ.434719 Cite this Article Set citation alerts
    Jun He, Jia He, Xizhen Xu, Bin Du, Baijie Xu, Changrui Liao, Zhiyong Bai, Yiping Wang. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing[J]. Photonics Research, 2021, 9(10): 2052 Copy Citation Text show less
    References

    [1] J. Canning. Fiber gratings and devices for sensors and lasers. Laser Photon. Rev., 2, 275-289(2008).

    [2] G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale. Probing the ultimate limit of fiber-optic strain sensing. Science, 330, 1081-1084(2010).

    [3] J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, C. Trinh. A complex multi-notch astronomical filter to suppress the bright infrared sky. Nat. Commun., 2, 581(2011).

    [4] W. F. Zhang, J. P. Yao. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun., 9, 1396(2018).

    [5] M. Beresna, M. Gecevičius, P. G. Kazansky. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon., 6, 293-339(2014).

    [6] M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, M. J. Withford. Ultrafast laser written active devices. Laser Photon. Rev., 3, 535-544(2009).

    [7] F. Chen, J. R. Vázquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 8, 251-275(2014).

    [8] J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, S. Nolte. Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology. Laser Photon. Rev., 6, 709-723(2012).

    [9] J. He, B. J. Xu, X. Z. Xu, C. R. Liao, Y. P. Wang. Review of femtosecond-laser-inscribed fiber Bragg gratings: fabrication technologies and sensing applications. Photon. Sens., 11, 203-226(2021).

    [10] S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt. Lett., 28, 995-997(2003).

    [11] K. A. Zagorulko, P. G. Kryukov, Yu. V. Larionov, A. A. Rybaltovsky, E. M. Dianov. Fabrication of fiber Bragg gratings with 267  nm femtosecond radiation. Opt. Express, 12, 5996-6001(2004).

    [12] M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, H. Bartelt. Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry. Opt. Express, 16, 19169-19178(2008).

    [13] Z. Zhang, B. J. Xu, J. He, M. X. Hou, W. J. Bao, Y. P. Wang. High-efficiency inscription of fiber Bragg grating array with high-energy nanosecond-pulsed laser Talbot interferometer. Sensors, 20, 4307(2020).

    [14] A. Martinez, M. Dubov, I. Khrushchev, I. Bennion. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett., 40, 1170(2004).

    [15] Y. Lai, K. Zhou, K. Sugden, I. Bennion. Point-by-point inscription of first-order fiber Bragg grating for C-band applications. Opt. Express, 15, 18318-18325(2007).

    [16] R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, M. J. Withford. Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss. Opt. Express, 20, 13451-13456(2012).

    [17] K. M. Zhou, M. Dubov, C. B. Mou, L. Zhang, V. K. Mezentsev, I. Bennion. Line-by-line fiber Bragg grating made by femtosecond laser. IEEE Photon. Technol. Lett., 22, 1190-1192(2010).

    [18] X. Z. Xu, J. He, C. R. Liao, K. M. Yang, K. K. Guo, C. Li, Y. F. Zhang, Z. B. Ouyang, Y. P. Wang. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Opt. Lett., 43, 4562-4565(2018).

    [19] G. Bharathan, T. T. Fernandez, M. Ams, R. I. Woodward, D. D. Hudson, A. Fuerbach. Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss. Opt. Lett., 44, 423-426(2019).

    [20] G. Bharathan, T. T. Fernandez, M. Ams, J.-Y. Carrée, S. Poulain, M. Poulain, A. Fuerbach. Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4  μm. Opt. Lett., 45, 4316-4319(2020).

    [21] P. Lu, S. J. Mihailov, H. M. Ding, D. Grobnic, R. B. Walker, D. Coulas, C. Hnatovsky, A. Y. Naumov. Plane-by-plane inscription of grating structures in optical fibers. J. Lightwave Technol., 36, 926-931(2018).

    [22] R. J. Williams, R. G. Krämer, S. Nolte, M. J. Withford. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique. Opt. Lett., 38, 1918-1920(2013).

    [23] E. Ertorer, M. Haque, J. Z. Li, P. R. Herman. Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating. Opt. Express, 26, 9323-9331(2018).

    [24] X. Z. Xu, J. He, J. He, B. J. Xu, R. X. Chen, Y. Wang, Y. T. Yang, Y. P. Wang. Efficient point-by-point Bragg grating inscription in sapphire fiber using femtosecond laser filaments. Opt. Lett., 46, 2742-2745(2021).

    [25] R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, M. J. Withford. Point-by-point inscription of apodized fiber Bragg gratings. Opt. Lett., 36, 2988-2990(2011).

    [26] S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, A. Fuerbach. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings. Opt. Express, 24, 30-40(2016).

    [27] G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, M. J. Withford. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Opt. Express, 18, 19844-19859(2010).

    [28] C. Z. Zhang, Y. H. Yang, C. Wang, C. R. Liao, Y. P. Wang. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability. Opt. Express, 24, 3981-3988(2016).

    [29] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [30] L. G. Wright, D. N. Christodoulides, F. W. Wise. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics, 9, 306-310(2015).

    [31] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [32] I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, T. Čižmár. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics, 12, 33-35(2015).

    [33] X. Z. Xu, J. He, C. R. Liao, Y. P. Wang. Multi-layer, offset-coupled sapphire fiber Bragg gratings for high-temperature measurements. Opt. Lett., 44, 4211-4214(2019).

    [34] M. J. Schmid, M. S. Muller. Measuring Bragg gratings in multimode optical fibers. Opt. Express, 23, 8087-8094(2015).

    [35] H. Liang, K. Ying, D. Wang, H. Y. Pi, X. Li, Z. Y. Wang, F. Wei, H. W. Cai. All-fiber narrow-bandwidth rectangular optical filter with reconfigurable bandwidth and tunable center wavelength. Opt. Express, 29, 11739-11749(2021).

    [36] G. D. Marshall, M. Ams, M. J. Withford. Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett., 31, 2690-2691(2006).

    [37] H. Zhang, S. M. Eaton, P. R. Herman. Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt. Lett., 32, 2559-2561(2007).

    [38] K. Dolgaleva, A. Malacarne, P. Tannouri, L. A. Fernandes, J. R. Grenier, J. S. Aitchison, J. Azaña, R. Morandotti, P. R. Herman, P. V. S. Marques. Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide. Opt. Lett., 36, 4416-4418(2011).

    [39] J. R. Grenier, L. A. Fernandes, J. S. Aitchison, P. V. S. Marques, P. R. Herman. Femtosecond laser fabrication of phase-shifted Bragg grating waveguides in fused silica. Opt. Lett., 37, 2289-2291(2012).

    [40] P. Zeil, C. Voigtländer, J. Thomas, D. Richter, S. Nolte. Femtosecond laser-induced apodized Bragg grating waveguides. Opt. Lett., 38, 2354-2356(2013).

    [41] P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, M. J. Booth. Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett., 37, 470-472(2012).

    [42] M. Ams, G. D. Marshall, D. J. Spence, M. J. Withford. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express, 13, 5676-5681(2005).

    [43] F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett., 35, 1106-1108(2010).

    [44] G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. De Silvestri. Femtosecond micromachining of symmetric waveguides at 1.5  mm by astigmatic beam focusing. Opt. Lett., 27, 1938-1940(2002).

    [45] J. Burghoff, S. Nolte, A. Tünnermann. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl. Phys. A, 89, 127-132(2007).

    [46] G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque. Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides. Appl. Phys. Lett., 92, 111103(2008).

    [47] L. Li, W. J. Nie, Z. Q. Li, Q. M. Lu, C. Romero, J. R. Vázquez de Aldana, F. Chen. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci. Rep., 7, 7034(2017).

    [48] H.-D. Nguyen, A. Ródenas, J. R. Vázquez De Aldana, G. Martín, J. Martínez, M. Aguiló, M. C. Pujol, F. Díaz. Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations. Opt. Express, 25, 3722-3736(2017).

    [49] L. Li, W. Nie, Z. Li, C. Romero, R. I. Rodriguez-Beltrán, J. R. Vázquez De Aldana, F. Chen. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt. Express, 25, 24236-24241(2017).

    [50] S. Kroesen, W. Horn, J. Imbrock, C. Denz. Electro–optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt. Express, 22, 23339-23348(2014).

    [51] H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, F. Díaz. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt. Express, 24, 7777-7791(2016).

    [52] O. Caulier, D. Le Coq, E. Bychkov, P. Masselin. Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation. Opt. Lett., 38, 4212-4215(2013).

    [53] G. Salamu, F. Jipa, M. Zamfirescu, N. Pavel. Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique. Opt. Mater. Express, 4, 790-797(2014).

    [54] Q. Zhang, D. Yang, J. Qi, Y. Cheng, Q. Gong, Y. Li. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering. Opt. Express, 25, 13263-13270(2017).

    [55] C. Yan, S.-J. Huang, Z. Miao, Z. Chang, J. Z. Zeng, T. Y. Wang. 3D refractive index measurements of special optical fibers. Opt. Fiber Technol., 31, 65-73(2016).

    [56] J. R. Grenier, L. A. Fernandes, P. R. Herman. Femtosecond laser writing of optical edge filters in fused silica optical waveguides. Opt. Express, 21, 4493-4502(2013).

    [57] C. W. Smelser, S. J. Mihailov, D. Grobnic. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express, 13, 5377-5386(2005).

    Jun He, Jia He, Xizhen Xu, Bin Du, Baijie Xu, Changrui Liao, Zhiyong Bai, Yiping Wang. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing[J]. Photonics Research, 2021, 9(10): 2052
    Download Citation