• Chinese Journal of Lasers
  • Vol. 50, Issue 24, 2402202 (2023)
Yiming Chi1、2、3, Dahu Qian1、3, Zhehe Yao1、2、3, Qunli Zhang1、2、3, Yunfeng Liu2, and Jianhua Yao1、2、3、*
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • 2College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • 3Collaborative Innovation Center of High-end Laser Manufacturing Equipment Co-Sponsored by Ministry and Province, Hangzhou 310023, Zhejiang , China
  • show less
    DOI: 10.3788/CJL230645 Cite this Article Set citation alerts
    Yiming Chi, Dahu Qian, Zhehe Yao, Qunli Zhang, Yunfeng Liu, Jianhua Yao. Microstructure and Properties of Laser In‑situ Synthesized TiB2‑TiC Reinforced Aluminum Matrix Coatings[J]. Chinese Journal of Lasers, 2023, 50(24): 2402202 Copy Citation Text show less
    References

    [1] Zhang Q, Zhu Y M, Gao X et al. Training high-strength aluminum alloys to withstand fatigue[J]. Nature Communications, 11, 5198(2020).

    [2] Yi X J, Lu Y L, He G Z et al. Global carbon transfer and emissions of aluminum production and consumption[J]. Journal of Cleaner Production, 362, 132513(2022).

    [3] Zou T C, Zhu H, Chen M Y et al. Microstructure and tensile properties of SiC reinforced aluminum matrix composite prepared by selective laser melting[J]. Chinese Journal of Lasers, 48, 1002123(2021).

    [4] Vreeling J A, Pei Y T, Wind B et al. Formation of γ-Al2O3 in reaction coatings produced with lasers[J]. Scripta Materialia, 44, 643-649(2001).

    [5] Ferraris M, Gili F, Lizarralde X et al. SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes[J]. Ceramics International, 48, 10941-10951(2022).

    [6] Saremi Ghareh Gol M, Malti A, Akhlaghi F. Effect of WC nanoparticles content on the microstructure, hardness and tribological properties of Al-WC nanocomposites produced by flake powder metallurgy[J]. Materials Chemistry and Physics, 296, 127252(2023).

    [7] Geng J W, Hong T R, Shen Y W et al. Microstructural stability of in-situ TiB2/Al composite during solution treatment[J]. Materials Characterization, 124, 50-57(2017).

    [8] Yi G, Li H, Zang C Y et al. Remarkable improvement in strength and ductility of Al-Cu foundry alloy by submicron-sized TiC particles[J]. Materials Science and Engineering: A, 855, 143903(2022).

    [9] Shao R N, He T T, Du S M et al. Preparation and wear resistance of Al2O3-Ni coating on aluminum alloy surface[J]. Surface Technology, 49, 173-179(2020).

    [10] Kaczmarek Ł, Adamczyk-Cieślak B, Mizera J et al. Influence of chemical composition of Ti/TiC/a-C:H coatings deposited on 7075 aluminum alloy on their selected mechanical properties[J]. Surface and Coatings Technology, 261, 304-310(2015).

    [11] Chernyshov N S, Kuznetsov Y A, Markov M A et al. Corrosion tests of oxide-ceramic coatings formed by microarc oxidation[J]. Refractories and Industrial Ceramics, 61, 220-223(2020).

    [12] Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 134, 106619(2021).

    [13] Chi Y M, Gong G H, Zhao L J et al. In-situ TiB2-TiC reinforced Fe-Al composite coating on 6061 aluminum alloy by laser surface modification[J]. Journal of Materials Processing Technology, 294, 117107(2021).

    [14] Zhang P F, Li Y X, Li L et al. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy surface by laser cladding[J]. China Surface Engineering, 31, 159-164(2018).

    [15] Chong P H, Man H C, Yue T M. Laser fabrication of Mo-TiC MMC on AA6061 aluminum alloy surface[J]. Surface and Coatings Technology, 154, 268-275(2002).

    [16] Katipelli L R, Agarwal A, Dahotre N B. Interfacial strength of laser surface engineered TiC coating on 6061 Al using four-point bend test[J]. Materials Science and Engineering: A, 289, 34-40(2000).

    [17] Katipelli L R, Agarwal A, Dahotre N B. Laser surface engineered TiC coating on 6061 Al alloy: microstructure and wear[J]. Applied Surface Science, 153, 65-78(2000).

    [18] Zhang T T, Feng K, Li Z G et al. Effects of in situ synthesized TiB2 on crystallographic orientation, grain size and nanohardness of AA6061 alloy by laser surface alloying[J]. Materials Letters, 253, 213-217(2019).

    [19] Zhang X J, Gao K Y, Wang Z et al. Effect of intermetallic compounds on interfacial bonding of Al/Fe composites[J]. Materials Letters, 333, 133597(2023).

    [20] Jing P Y, Wang H J, Chen W G et al. Effect of Ti addition on microstructure and tribological properties of laser cladding Ni35/WC coating in an oxygen-free environment[J]. Surface and Coatings Technology, 440, 128480(2022).

    [21] Sahoo B N, Panigrahi S K. Synthesis, characterization and mechanical properties of in situ (TiC-TiB2) reinforced magnesium matrix composite[J]. Materials & Design, 109, 300-313(2016).

    [22] Zhang X N, Lü W J, Zhang D et al. In situ technique for synthesizing (TiB+TiC)/Ti composites[J]. Scripta Materialia, 41, 39-46(1999).

    [23] Sun Y. First-principles calculation of phase stability and physical properties of transition metal borides[D], 26-36(2016).

    [24] Wu Q L, Li W G, Zhong N et al. Microstructure and wear behavior of laser cladding VC-Cr7C3 ceramic coating on steel substrate[J]. Materials & Design, 49, 10-18(2013).

    [25] Yang H Y, Wang Z, Chen L Y et al. Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties[J]. Composites Part B: Engineering, 209, 108605(2021).

    [26] Ye D L, Hu J H[M]. Handbook of practical inorganic thermodynamic data, 16(2002).

    [27] Aguilar-Hurtado J Y, Vargas-Uscategui A, Zambrano-Mera D et al. The effect of boron content on the microstructure and mechanical properties of Fe50-xMn30Co10Cr10Bx (x=0, 0.3, 0.6 and 1.7 wt%) multi-component alloys prepared by arc-melting[J]. Materials Science and Engineering: A, 748, 244-252(2019).

    [28] Isaev E I, Simak S I, Abrikosov I A et al. Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study[J]. Journal of Applied Physics, 101, 123519(2007).

    [29] Duschanek H, Rogl P, Lukas H L. A critical assessment and thermodynamic calculation of the boron-carbon-titanium (B-C-Ti) ternary system[J]. Journal of Phase Equilibria, 16, 46-60(1995).

    [30] Rogl P, Bittermann H. Ternary metal boron carbides[J]. International Journal of Refractory Metals and Hard Materials, 17, 27-32(1999).

    [31] Liu Y N, Yang L J, Yang X J et al. Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy[J]. Ceramics International, 47, 2230-2243(2021).

    [32] Kelly P M, Zhang M X. Edge-to-edge matching—the fundamentals[J]. Metallurgical and Materials Transactions A, 37, 833-839(2006).

    [33] Zhang M X, Kelly P M. Edge-to-edge matching and its applications[J]. Acta Materialia, 53, 1085-1096(2005).

    [34] Jing L J, Pan Y, Lu T et al. Nucleation potency prediction of LaB6 with E2EM model and its influence on microstructure and tensile properties of Al-7Si-0.3Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 28, 1687-1694(2018).

    [35] Liu L M, Wang S Q, Ye H Q. Adhesion and bonding of the Al/TiC interface[J]. Surface Science, 550, 46-56(2004).

    [36] Han Y F, Dai Y B, Shu D et al. First-principles calculations on the stability of Al/TiB2 interface[J]. Applied Physics Letters, 89, 144107(2006).

    Yiming Chi, Dahu Qian, Zhehe Yao, Qunli Zhang, Yunfeng Liu, Jianhua Yao. Microstructure and Properties of Laser In‑situ Synthesized TiB2‑TiC Reinforced Aluminum Matrix Coatings[J]. Chinese Journal of Lasers, 2023, 50(24): 2402202
    Download Citation