• Acta Photonica Sinica
  • Vol. 52, Issue 5, 0552220 (2023)
Liang ZHENG1, Fan LI1, Jiawei WANG1, Jianbo LI1..., Li GAO1, Ziyang HE1, Xin SHANG1, Wangbao YIN2,3, Long TIAN1,3,*, Wenhai YANG4 and Yaohui ZHENG1,3|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4China Academy of Space Technology(Xi'an), Xi'an 710000, China
  • show less
    DOI: 10.3788/gzxb20235205.0552220 Cite this Article
    Liang ZHENG, Fan LI, Jiawei WANG, Jianbo LI, Li GAO, Ziyang HE, Xin SHANG, Wangbao YIN, Long TIAN, Wenhai YANG, Yaohui ZHENG. Low Noise Photoelectric Detection Technology for Laser Intensity Noise Suppression in mHz Band[J]. Acta Photonica Sinica, 2023, 52(5): 0552220 Copy Citation Text show less
    References

    [1] M BAILES, B K BERGER, P R BRADY et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 3, 344-366(2021).

    [2] Z LUO, Y WANG, Y WU et al. The Taiji program: a concise overview. Progress of Theoretical and Experimental Physics, 2021, 05A108(2021).

    [3] J LUO, L S CHEN, H Z DUAN et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity, 33, 035010(2016).

    [4] F BADARACCO, J HARMS, C DE ROSSI et al. KAGRA underground environment and lessons for the Einstein Telescope. Physical Review D, 104, 042006(2021).

    [5] Qinghui LI, Wei LI, Yu SUN et al. Laser parameters requirement for third-generation ground-based gravitational wave detection. Acta Physica Sinica, 71, 164203(2022).

    [6] Xinmin ZHANG, Meng SU, Hong LI et al. Primordial gravitational waves and the ali probe project. Modern Physics, 28, 3-9(2016).

    [7] A HAMMESFAHR. LISA mission study overview. Classical and Quantum Gravity, 18, 4045(2001).

    [8] Lihua ZHANG, Ming LI, Yongxin GAO et al. The spacecraft system and platform technologies for gravitational wave detection in space. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 129-137(2021).

    [9] B O LANGE. The control and use of drag-free satellites(1964).

    [10] Ming HU, Hongyin LI, Zebing ZHOU. Drag-free control technology and its applications. Manned Spaceflight, 61-69(2013).

    [11] Zhu ZHU, Yanbin ZHAO, Chaolan YOU et al. Drag-free control of non-contact satellite platform for space gravitational wave detection. Journal of Nanjing University of Aeronautics & Astronautics, 54, 9-13(2022).

    [12] Jianfeng DENG, Zhiming CAI, Kun CHEN et al. Drag-free control and its application in China's space gravitational wave detection. Chinese Optics, 12, 503-514(2019).

    [13] X LIAN, J ZHANG, J YANG et al. The determination for ideal release point of test masses in drag-free satellites for the detection of gravitational waves. Advances in Space Research, 67, 824-833(2021).

    [14] M MING, Y LUO, Y R LIANG et al. Ultraprecision intersatellite laser interferometry. International Journal of Extreme Manufacturing, 2, 022003(2020).

    [15] Hongyin LI, Yanchong LIU, Chengrui WANG et al. Preliminary design consideration and development of TianQin inertial sensor. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 186-193(2021).

    [16] Shufan WU, Nan WANG, Deren GONG. Key technologies for space science gravitational wave detection. Journal of Deep Space Exploration, 7, 118-127(2020).

    [17] J K ZIEMER, R C M MARRESE, S M ARESTIE et al. LISA colloid microthruster technology development plan and progress. IEPC, 895(2019).

    [18] Hui LIU, Shangsheng WANG, Daren YU et al. Life assessment research status of micro-Newton electric propulsion system for space gravitational wave detection. Chinese Space Science and Technology, 41, 10-20(2021).

    [19] Qiang LIU, Zaiyuan WANG, Jiehao WANG et al. Research progress on low-noise laser for space-based gravitational wave detector (invited). Acta Photonica Sinica, 51, 0751409(2022).

    [20] Zaiyuan WANG, Jiehao WANG, Yuhang LI et al. Single-frequency laser with low intensity noise in milli-hertz band for space-based gravitational wave detection. Acta Physica Sinica, 72, 054205(2023).

    [21] B WILLKE, N UEHARA, E K GUSTAFSON et al. Spatial and temporal filtering of a 10-W Nd∶YAG laser with a Fabry-Perot ring-cavity premode cleaner. Optics Letters, 23, 1704-1706(1998).

    [22] Y CHEN, J ZHANG, Y LI. Reduction of intensity noise of single-frequency Nd∶YVO~4 laser using mode cleaner. Chinese Journal of Lasers, 28, 197-200(2001).

    [23] M TSE, H YU, N KIJBUNCHOO et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Physical Review Letters, 123, 231107(2019).

    [24] F ACERNESE, M AGATHOS, L AIELLO et al. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Physical Review Letters, 123, 231108(2019).

    [25] Kui LIU, Rongguo YANG, Hailong ZHANG et al. Noise suppression of single frequency fiber laser. Chinese Journal of Lasers, 36, 1852-1856(2009).

    [27] Yajun WANG, Li GAO, Xiaoli ZHANG et al. Recent development of low noise laser for precision measurement (Invited). Infrared and Laser Engineering, 49, 20201073(2020).

    [28] P KWEE, B WILLKE, K DANZMANN. Shot-noise-limited laser power stabilization with a high-power photodiode array. Optics Letters, 34, 2912-2914(2009).

    [29] Yuqiong LI, Luyu WANG, Chenyu WANG. Preliminary test of performance detection and analysis of weak-light detector for space gravitational wave detection. Optics and Precision Engineering, 27, 1710-1718(2019).

    [30] Weijie WANG, Fan LI, Jianbo LI et al. Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited). Infrared and Laser Engineering, 51, 20220300(2022).

    [31] J W COOLEY, J W TUKEY. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19, 297-301(1965).

    [32] S K DE, J L STEBBINS, L H CHEN et al. Design, synthesis, and structure-activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase. Journal of Medicinal Chemistry, 52, 1943-1952(2009).

    [33] Zilin ZHAO, Fan LI, Ruixin LI et al. Noise characterization of low noise voltage reference at low frequency band. Acta Sinica Quantum Optica, 28, 1-7(2022).

    [34] H ZHOU, W WANG, C CHEN et al. A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure. IEEE Sensors Journal, 15, 2101-2105(2014).

    [35] A KAY. Operational amplifier noise: techniques and tips for analyzing and reducing noise(2012).

    [37] M TRÖBS, G HEINZEL. Improved spectrum estimation from digitized time series on a logarithmic frequency axis. Measurement, 39, 120-129(2006).

    [38] J JUNKER, P OPPERMANN, B WILLKE. Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer. Optics Letters, 42, 755-758(2017).

    [39] Fan LI, Jiawei WANG, Zichao GAO et al. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, 71, 209501(2022).

    Liang ZHENG, Fan LI, Jiawei WANG, Jianbo LI, Li GAO, Ziyang HE, Xin SHANG, Wangbao YIN, Long TIAN, Wenhai YANG, Yaohui ZHENG. Low Noise Photoelectric Detection Technology for Laser Intensity Noise Suppression in mHz Band[J]. Acta Photonica Sinica, 2023, 52(5): 0552220
    Download Citation