[4] H Sun, M Zhang, C Zhang, et al. CADnCNN:improving DnCNN denoising with cross attention[C]∥2023 2nd International Conference on Machine Learning,Cloud Computing and Intelligent Mining (MLCCIM).Jiuzhaigou,China:IEEE,2023:245—249.
[10] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥ Proceedings of the IEEE conference on computer vision and pattern recognition.Salt Lake City,UT,USA:IEEE,2018:7132—7141.
[11] Woo, Sanghyun, et al. Cbam: Convolutional block attention module[C]∥Proceedings of the European conference on computer vision(ECCV),Zurich:Google Research,2018:3—19.
[12] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]∥Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,Seattle,WA,USA:IEEE,2020:115331—11539.
[13] Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel-spatial interactions[J]. ArXiv preprint,ArXiv:2112.055612021.
[15] K Dabov, A Foi, V Katkovnik, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Trans,2007,16(8):2080—2095.
[16] T Huang, S Li, X Jia, et al. Neighbor2Neighbor:Selfsupervised denoising from single noisy images[C]∥Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Online:IEEE,2021:14781—14790.
[17] Y Quan, M Chen, T Pang, et al. Self2Self with dropout:Learning self-supervised denoising from single image[C]∥Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition Seattle,USA:IEEE,2020:1887—1895.
[18] V Lempitsky, A Vedaldi, D Ulyanov. Deep image prior[C]∥Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Salt Lake City,USA:IEEE,2018:9446—9454.
[19] A Krull, T O Buchholz, F Jug. Noise2Void—Learning denoising from single noisy images[C]∥Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition.California,USA:IEEE,2019:2124—2132.
[20] Y Xie, Z Wang, S Ji. Noise2Same: Optimizing a self-supervised bound for image denoisin[C]∥Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition.Online:IEEE,2020:20320—20330.
[21] J Xu, Y Huang, M Cheng, et al, Noisyas-clean:Learning self-supervised denoising from corrupted image[J]. IEEE Trans.Image Process,2020,29:9316—9329.
[24] J. Ko, S. Lee, Self2Self+: Single-image denoising with self supervised learning and image quality assessment loss[J]. ArXiv preprint,2023,arXiv:2307:10695
[25] H. Qu, K. Liu, and L. Zhang. Research on improved black widow algorithm for medical image denoising[J]. Sci.Rep.,2024,14(1):2514.
[26] Y Zhang, Y Zhu, E Nichols, et al. A Poisson-Gaussian denoising dataset with real fluorescence microscopy images[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.California,USA:IEEE,2019:11702—11710.
[27] C Tomasi, R Manduchi. Bilateral filtering for gray and color images[C]∥Sixth International Conference on Computer Vision,Bombay,India:IEEE,1998:839—846.
[28] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA:IEEE,2005:60—65.
[29] Wan Q, Huang Z, Lu J, et al. Seaformer: Squeeze-enhanced axial transformer for mobile semantic segmentation[C]∥The Eleventh International Conference on Learning Representations.Kigali,Rwanda:IEEE,2023:1—10.
[30] Ouyang D, He S, Zhang G, et al. Efficient multi-scale attention module with cross-spatial learning[C]∥ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing.Rhodes Island,Greece:IEEE,2023:1—5.