• Chinese Optics Letters
  • Vol. 23, Issue 3, 031201 (2025)
Guanming Xie1,2, Weixin Ma1,2, Yueqiang Zhang1,2,*, Sanhong Wang3..., You Li4, Biao Hu1,2, Shaohua Yan1,2, Yu Fu1,2 and Qifeng Yu1,2,5|Show fewer author(s)
Author Affiliations
  • 1Shenzhen Key Laboratory of Intelligent Optical Measurement and Detection, Shenzhen University, Shenzhen 518060, China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3Shenzhen Sincevision Technology Co., Ltd., Shenzhen 518055, China
  • 4National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
  • 5College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202523.031201 Cite this Article Set citation alerts
    Guanming Xie, Weixin Ma, Yueqiang Zhang, Sanhong Wang, You Li, Biao Hu, Shaohua Yan, Yu Fu, Qifeng Yu, "Keyhole morphology monitoring in laser welding using optical coherence tomography," Chin. Opt. Lett. 23, 031201 (2025) Copy Citation Text show less
    References

    [1] A. Sadeghian, N. Iqbal. A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing. Opt. Laser Technol., 146, 107595(2022).

    [2] J. Zou, Y. He, S. Wu et al. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser. Appl. Surf. Sci., 357, 1522(2015).

    [3] C. Mittelstädt, T. Mattulat, T. Seefeld et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel. J. Laser Appl., 31, 022007(2019).

    [4] P. J. Webster, L. G. Wright, Y. Ji et al. Automatic laser welding and milling with in situ inline coherent imaging. Opt. Lett., 39, 6217(2014).

    [5] M. Schmoeller, C. Stadter, S. Liebl et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography. J. Laser Appl., 31, 022409(2019).

    [6] G. Xie, S. Wang, Y. Zhang et al. Laser welding depth monitoring method based on optical coherence tomography. Acta Opt. Sin., 43, 1114002(2023).

    [7] D. Ma, P. Jiang, L. Shu et al. Real-time porosity monitoring during laser welding of aluminum alloys based on keyhole 3D morphology characteristics. J. Manuf. Syst., 65, 70(2022).

    [8] D. Huang, E. A. Swanson, C. P. Lin et al. Optical coherence tomography. Science, 254, 1178(1991).

    [9] C. Chen, Y. Pu, W. Shi. Low-cost spectrometer design for ultra-high resolution spectral domain optical coherence tomography. Chin. Opt. Lett., 21, 101101(2023).

    [10] N. Kouraytem, X. Li, R. Cunningham et al. Effect of laser-matter interaction on molten pool flow and keyhole dynamics. Phys. Rev. Appl., 11, 064054(2019).

    [11] F. Dorsch, W. Dubitzky, L. Effing et al. Capillary depth measurement for process control. High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI, 63(2017).

    [12] M. Luo, Y. C. Shin. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding. Opt. Lasers Eng., 64, 59(2015).

    [13] Y. Zhang, G. Chen, H. Wei et al. A novel ‘sandwich’ method for observation of the keyhole in deep penetration laser welding. Opt. Lasers Eng., 46, 133(2008).

    [14] Y. Kawahito, M. Mizutani, S. Katayama. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry. J. Phys. D, 40, 5854(2007).

    [15] Y. Huang, T. G. Fleming, S. J. Clark et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing. Nat. Commun., 13, 1170(2022).

    [16] T. G. Fleming, S. J. Clark, X. Fan et al. Synchrotron validation of inline coherent imaging for tracking laser keyhole depth. Addit. Manuf., 77, 103798(2023).

    [17] J. Kim, S. Oh, H. Ki. A study of keyhole geometry in laser welding of zinc-coated and uncoated steels using a coaxial observation method. J. Mater. Process. Technol., 225, 451(2015).

    [18] M. Zhang, G. Chen, Y. Zhou et al. Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser. Opt. Express, 21, 19997(2013).

    [19] M. Miyagi, J. Wang. Keyhole dynamics and morphology visualized by in-situ X-ray imaging in laser melting of austenitic stainless steel. J. Mater. Process. Technol., 282, 116673(2020).

    [20] R. Cunningham, C. Zhao, N. Parab et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science, 363, 849(2019).

    [21] T. Patterson, B. Panton, J. Lippold. Analysis of the laser welding keyhole using inline coherent imaging. J. Manuf. Processes, 82, 601(2022).

    [22] G. Xie, S. Wang, Y. Zhang et al. Welding depth measurement for different mode lasers using optical coherence tomography. Chin. Opt. Lett., 22, 011203(2024).

    [23] M. Boley, F. Fetzer, R. Weber et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography. Opt. Lasers Eng., 119, 56(2019).

    [24] T. J. Krause, T. R. Allen, J. M. Fraser. Self-witnessing coherent imaging for artifact removal and noise filtering. Opt. Lasers Eng., 151, 106936(2022).

    [25] G. Xie, S. Wang, Y. Zhang et al. An efficient method for laser welding depth determination using optical coherence tomography. Sensors, 23, 5223(2023).

    Guanming Xie, Weixin Ma, Yueqiang Zhang, Sanhong Wang, You Li, Biao Hu, Shaohua Yan, Yu Fu, Qifeng Yu, "Keyhole morphology monitoring in laser welding using optical coherence tomography," Chin. Opt. Lett. 23, 031201 (2025)
    Download Citation