• High Power Laser and Particle Beams
  • Vol. 34, Issue 10, 104006 (2022)
Wangsheng Chu, Guobin Zhang, Zhe Sun, Zhenlin Luo, Ningdong Huang, Shancai Zhang, Guangyao Feng*, and Xiaosong Liu*
Author Affiliations
  • National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
  • show less
    DOI: 10.11884/HPLPB202234.220122 Cite this Article
    Wangsheng Chu, Guobin Zhang, Zhe Sun, Zhenlin Luo, Ningdong Huang, Shancai Zhang, Guangyao Feng, Xiaosong Liu. Brief introduction of low-energy diffraction limited storage-ring-based synchrotron radiation and its applications[J]. High Power Laser and Particle Beams, 2022, 34(10): 104006 Copy Citation Text show less
    References

    [1] Brown G S, Moncton D E. Hbook on synchrotron radiation[M]. New Yk: NthHoll, 1991.

    [2] Xian Dingchang. Synchrtron radiation—the magic light[M]. Changsha: Hunan Education Publishing House, 1994

    [3] Elder F R, Gurewitsch A M, Langmuir R V, et al. Radiation from electrons in a synchrotron[J]. Physical Review, 71, 829-830(1947).

    [4] Jiang Xiaoming, Xiu Lisong. Synchrotron radiation its applications[M]. Beijing: Beijing Science Technology Press, 1996

    [5] Ma Lidun, Yang Fujia. Introduction to synchrotron radiation applications[M]. 2nd ed. Shanghai: Fudan University Press, 2005.

    [6] Mai Zhenhong. Development history and current situation of synchrotron radiation—introduction to the new book “synchrotron radiation source and its application”[J]. Modern Physics, 26, 65-71(2014).

    [7] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 21, 843-855(2014).

    [8] Hitchcock A P, Toney M F. Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications[J]. Journal of Synchrotron Radiation, 21, 1019-1030(2014).

    [9] Frenkel A I, van Bokhoven J A. X-ray spectroscopy for chemical and energy sciences: the case of heterogeneous catalysis[J]. Journal of Synchrotron Radiation, 21, 1084-1089(2014).

    [10] de Jonge M D, Ryan C G, Jacobsen C J. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens[J]. Journal of Synchrotron Radiation, 21, 1031-1047(2014).

    [11] Liu Feng, Brady M A, Wang Cheng. Resonant soft X-ray scattering for polymer materials[J]. European Polymer Journal, 81, 555-568(2016).

    [12] Comin R, Damascelli A. Resonant X-ray scattering studies of charge order in cuprates[J]. Annual Review of Condensed Matter Physics, 7, 369-405(2016).

    [13] Shpyrko O G. X-ray photon correlation spectroscopy[J]. Journal of Synchrotron Radiation, 21, 1057-1064(2014).

    [14] Sandy A R, Zhang Qingteng, Lurio L B. Hard X-ray photon correlation spectroscopy methods for materials studies[J]. Annual Review of Materials Research, 48, 167-190(2018).

    [15] Tamarat P, Bodnarchuk M I, Trebbia J B, et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state[J]. Nature Materials, 18, 717-724(2019).

    [16] Ehrburger-Dolle F, Morfin I, Bley F, et al. XPCS investigation of the dynamics of filler particles in stretched filled elastomers[J]. Macromolecules, 45, 8691-8701(2012).

    [17] Kukreja R, Hua N, Ruby J, et al. Orbital domain dynamics in magnetite below the Verwey transition[J]. Physical Review Letters, 121, 177601(2018).

    [18] Chen X M, Thampy V, Mazzoli C, et al. Remarkable stability of charge density wave order in La1.875Ba0.125CuO4[J]. Physical Review Letters, 117, 167001(2016).

    [19] Kirz J, Rarback H. Soft X-ray microscopes[J]. Review of Scientific Instruments, 56, 1-13(1985).

    [20] Pfeiffer F. X-ray ptychography[J]. Nature Photonics, 12, 9-17(2018).

    [21] Ohigashi T, Yuzawa H, Kosugi N. A low-pass filtering Fresnel zone plate for soft X-ray microscopic analysis down to the lithium K-edge region[J]. Review of Scientific Instruments, 91, 103110(2020).

    [22] Chao Weilun, Harteneck B D, Liddle J A, et al. Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 435, 1210-1213(2005).

    [23] Shapiro D A, Yu Y S, Tyliszczak T, et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 8, 765-769(2014).

    [24] Shi Xiaowen, Burdet N, Chen Bo, et al. X-ray ptychography on low-dimensional hard-condensed matter materials[J]. Applied Physical Reviews, 6, 011306(2019).

    [25] Liu Xiaosong, Yang Wanli, Liu Zhi. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials[J]. Advanced Materials, 26, 7710-7729(2014).

    [26] Berkeley Lab, U. S. Department of Energy Office of Science, ALSU. ALSU: solving scientific challenges with coherent soft Xrays, wkshop rept on early science enabled by the Advanced Light Source Upgrade[R]. 2017.

    [27] Avila J, Asensio M C. First NanoARPES user facility available at SOLEIL: an innovative and powerful tool for studying advanced materials[J]. Synchrotron Radiation News, 27, 24-30(2014).

    [28] Kastl C, Koch R J, Chen C T, et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy[J]. ACS Nano, 13, 1284-1291(2019).

    [29] Jia Chunjing, Wohlfeld K, Wang Yao, et al. Using RIXS to uncover elementary charge and spin excitations[J]. Physical Review X, 6, 021020(2016).

    [30] Qiao Ruimin, Li Qinghao, Zhuo Zengqing, et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the Advanced Light Source[J]. Review of Scientific Instruments, 88, 033106(2017).

    [31] Chuang Yide, Feng Xuefei, Glans-Suzuki P A, et al. A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy[J]. Journal of Synchrotron Radiation, 27, 695-707(2020).

    [32] Kaiser A M, Schöppner C, Römer F M, et al. Nano and picosecond magnetization dynamics of weakly coupled CoFe/Cr/NiFe trilayers studied by a multitechnique approach[J]. Physical Review B, 84, 134406(2011).

    [33] van der Laan G, Figueroa A I. X-ray magnetic circular dichroism—A versatile tool to study magnetism[J]. Coordination Chemistry Reviews, 277/278, 95-129(2014).

    [34] Wu Yizheng. Applications of X-ray magnetic dichroism in spintronics[J]. Wuli, 39, 406-415(2010).

    [35] Mengotti E, Heyderman L J, Rodríguez A F, et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice[J]. Nature Physics, 7, 68-74(2011).

    [36] Zhao Tong, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature[J]. Nature Materials, 5, 823-829(2006).

    [37] Suchorski Y, Kozlov S M, Bespalov I, et al. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation[J]. Nature Materials, 17, 519-522(2018).

    [38] Shiino T, Oh S H, Haney P M, et al. Antiferromagnetic domain wall motion driven by spin-orbit torques[J]. Physical Review Letters, 117, 087203(2016).

    [39] Litzius K, Lemesh I, Krüger B, et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy[J]. Nature Physics, 13, 170-175(2017).

    [40] Wang Wenbo, Ou Yunbo, Liu Chang, et al. Direct evidence of ferromagnetism in a quantum anomalous Hall system[J]. Nature Physics, 14, 791-795(2018).

    [41] Jiang Wanjun, Upadhyaya P, Zhang Wei, et al. Blowing magnetic skyrmion bubbles[J]. Science, 349, 283-286(2015).

    [42] Fukami S, Zhang Chaoliang, DuttaGupta S, et al. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system[J]. Nature Materials, 15, 535-541(2016).

    [43] Zhou Jiadong, Lin Junhao, Huang Xiangwei, et al. A library of atomically thin metal chalcogenides[J]. Nature, 556, 355-359(2018).

    [44] Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics[J]. Reviews of Modern Physics, 90, 015005(2018).

    [45] Lesne E, Fu Yu, Oyarzun S, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces[J]. Nature Materials, 15, 1261-1266(2016).

    [46] Dagotto E. Complexity in strongly correlated electronic systems[J]. Science, 309, 257-262(2005).

    [47] Keimer B, Moore J E. The physics of quantum materials[J]. Nature Physics, 13, 1045-1055(2017).

    [48] Tokura Y, Kawasaki M, Nagaosa N. Emergent functions of quantum materials[J]. Nature Physics, 13, 1056-1068(2017).

    [49] Basov D N, Averitt R D, Hsieh D. Towards properties on demand in quantum materials[J]. Nature Materials, 16, 1077-1088(2017).

    [50] Borisenko S V, Evtushinsky D V, Liu Zhonghao, et al. Direct observation of spin–orbit coupling in iron-based superconductors[J]. Nature Physics, 12, 311-317(2016).

    [51] Lu Donghui, Vishik IM, Yi Ming, et al. Angle-resolved photoemission studies of quantum materials[J]. Annual Review of Condensed Matter Physics, 3, 129-167(2012).

    [52] Liu Z K, Zhou B, Zhang Yi, et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi[J]. Science, 343, 864-867(2014).

    [53] Ding Hanjie, Richard P, Nakayama K, et al. Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2[J]. Europhysics Letters, 83, 47001(2008).

    [54] Lu D H, Yi Ming, Mo S K, et al. Electronic structure of the iron-based superconductor LaOFeP[J]. Nature, 455, 81-84(2008).

    [55] Zhang Yong, He Cheng, Ye Z R, et al. Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs[J]. Physical Review B, 85, 085121(2012).

    [56] Zhou Shuyun, Gweon GH, Fedorov AV, et al. Erratum: substrate-induced bandgap opening in epitaxial graphene[J]. Nature Materials, 6, 916(2007).

    [57] Fäth M, Freisem S, Menovsky A A, et al. Spatially inhomogeneous metal-insulator transition in doped manganites[J]. Science, 285, 1540-1542(1999).

    [58] Song Canli, Wang Yilin, Cheng Peng, et al. Direct observation of nodes and twofold symmetry in FeSe superconductor[J]. Science, 332, 1410-1413(2011).

    [59] Li Wei, Ding Hao, Deng Peng, et al. Phase separation and magnetic order in K-doped iron selenide superconductor[J]. Nature Physics, 8, 126-130(2012).

    [60] Parkin S. Racetrack memy: a stage class memy based on current controlled magic domain wall motion[C]2009 Device Research Conference. 2009: 36.

    [61] Knafo W, Raymond S, Lejay P, et al. Antiferromagnetic criticality at a heavy-fermion quantum phase transition[J]. Nature Physics, 5, 753-757(2009).

    [62] Schröder A, Aeppli G, Coldea R, et al. Onset of antiferromagnetism in heavy-fermion metals[J]. Nature, 407, 351-355(2000).

    [63] Duan Chunruo, Baumbach R E, Podlesnyak A, et al. Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe2[J]. Nature, 600, 636-640(2021).

    [64] Shpyrko O G, Isaacs E D, Logan J M, et al. Direct measurement of antiferromagnetic domain fluctuations[J]. Nature, 447, 68-71(2007).

    [65] Kim K J, Kim S K, Hirata Y, et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets[J]. Nature Materials, 16, 1187-1192(2017).

    [66] Bernstein D P, Bräuer B, Kukreja R, et al. Nonuniform switching of the perpendicular magnetization in a spin-torque-driven magnetic nanopillar[J]. Physical Review B, 83, 180410(2011).

    [67] Reyren N, Bouzehouane K, Chauleau J Y, et al. Skyrmions in magic multilayers: chirality, electrical detection currentinduced motion[C]. Proceedings of SPIE, Spintronics X. 2017: 1035724.

    [68] Hellman F, Hoffmann A, Tserkovnyak Y, et al. Interface-induced phenomena in magnetism[J]. Reviews of Modern Physics, 89, 025006(2017).

    [69] Banerjee S, Erten O, Randeria M. Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface[J]. Nature Physics, 9, 626-630(2013).

    [70] Grisolia M N, Varignon J, Sanchez-Santolino G, et al. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces[J]. Nature Physics, 12, 484-492(2016).

    [71] Saito Y, Nakamura Y, Bahramy M S, et al. Superconductivity protected by spin-valley locking in ion-gated MoS2[J]. Nature Physics, 12, 144-149(2016).

    [72] Li J, Shelford L R, Shafer P, et al. Direct detection of pure ac spin current by X-ray pump-probe measurements[J]. Physical Review Letters, 117, 076602(2016).

    [73] Li Wenjing, Bykova I, Zhang Shilei, et al. Anatomy of skyrmionic textures in magnetic multilayers[J]. Advanced Materials, 31, 1807683(2019).

    [74] Tumbleston J R, Collins B A, Yang Liqiang, et al. The influence of molecular orientation on organic bulk heterojunction solar cells[J]. Nature Photonics, 8, 385-391(2014).

    [75] Collins B A, Cochran J E, Yan Hongping, et al. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films[J]. Nature Materials, 11, 536-543(2012).

    [76] Suh H S, Kang Huiman, Nealey P F, et al. Thickness dependence of neutral parameter windows for perpendicularly oriented block copolymer thin films[J]. Macromolecules, 43, 4744-4751(2010).

    [77] Ahn H, Shin C, Lee B, et al. Phase transitions of block copolymer film on homopolymer-grafted substrate[J]. Macromolecules, 43, 1958-1963(2010).

    [78] Sivaniah E, Hayashi Y, Matsubara S, et al. Symmetric diblock copolymer thin films on rough substrates. Kinetics and structure formation in pure block copolymer thin films[J]. Macromolecules, 38, 1837-1849(2005).

    [79] Hur S M, Khaira G S, Ramírez-Hernández A, et al. Simulation of defect reduction in block copolymer thin films by solvent annealing[J]. ACS Macro Letters, 4, 11-15(2015).

    [80] Sinturel C, Vayer M, Morris M, et al. Solvent vapor annealing of block polymer thin films[J]. Macromolecules, 46, 5399-5415(2013).

    [81] De Rosa C, Park C, Thomas E L, et al. Microdomain patterns from directional eutectic solidification and epitaxy[J]. Nature, 405, 433-437(2000).

    [82] Tang Chuanbing, Wu Wei, Smilgies D M, et al. Robust control of microdomain orientation in thin films of block copolymers by zone casting[J]. Journal of the American Chemical Society, 133, 11802-11809(2011).

    [83] Saito I, Miyazaki T, Yamamoto K. Depth-resolved structure analysis of cylindrical microdomain in block copolymer thin film by grazing-incidence small-angle X-ray scattering utilizing low-energy x-rays[J]. Macromolecules, 48, 8190-8196(2015).

    [84] Gann E, Watson A, Tumbleston J R, et al. Topographic measurement of buried thin-film interfaces using a grazing resonant soft X-ray scattering technique[J]. Physical Review B, 90, 245421(2014).

    [85] Leheny R L. XPCS: nanoscale motion and rheology[J]. Current Opinion in Colloid & Interface Science, 17, 3-12(2012).

    [86] Lu Jun, Wu Tianpin, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries[J]. Nature Energy, 2, 17011(2017).

    [87] Peled E, Menkin S. Review—SEI: past, present and future[J]. Journal of the Electrochemical Society, 164, A1703-A1719(2017).

    [88] Liu Xiaosong, Liu Jun, Qiao Ruimin, et al. Phase transformation and lithiation effect on electronic structure of LixFePO4: an in-depth study by soft X-ray and simulations[J]. Journal of the American Chemical Society, 134, 13708-13715(2012).

    [89] Liu Xiaosong, Wang Y J, Barbiellini B, et al. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation[J]. Physical Chemistry Chemical Physics, 17, 26369-26377(2015).

    [90] Xu Jing, Sun Meiling, Qiao Ruimin, et al. Elucidating anionic oxygen activity in lithium-rich layered oxides[J]. Nature Communications, 9, 947(2018).

    [91] Wu Jinpeng, Shen Zhixun, Yang Wanli. Redox mechanism in Na-ion battery cathodes probed by advanced soft X-ray spectroscopy[J]. Frontiers in Chemistry, 8, 816(2020).

    [92] Zhao Shuoqing, Yan Kang, Zhang Jinqiang, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 60, 2208-2220(2021).

    [93] House R A, Maitra U, Pérez-Osorio M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 577, 502-508(2020).

    [94] Yang Chunpeng, Fu Kun, Zhang Ying, et al. Protected lithium-metal anodes in batteries: from liquid to solid[J]. Advanced Materials, 29, 1701169(2017).

    [95] Li Yiyang, Weker J N, Gent W E, et al. Dichotomy in the lithiation pathway of ellipsoidal and platelet LiFePO4 particles revealed through nanoscale operando state-of-charge imaging[J]. Advanced Functional Materials, 25, 3677-3687(2015).

    [96] Yao Siyu, Zhang Xiao, Zhou Wu, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 357, 389-393(2017).

    [97] Weststrate C J, Sharma D, Rodriguez D G, et al. Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions[J]. Nature Communications, 11, 750(2020).

    [98] Zou Xiaoxin, Zhang Yu. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 44, 5148-5180(2015).

    [99] Favaro M, Yang Jinhui, Nappini S, et al. Understanding the oxygen evolution reaction mechanism on CoOx using Operando ambient-pressure X-ray photoelectron spectroscopy[J]. Journal of the American Chemical Society, 139, 8960-8970(2017).

    [100] Su Xiaozhi, Wang Yu, Zhou Jing, et al. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction[J]. Journal of the American Chemical Society, 140, 11286-11292(2018).

    [101] Ma Qiuyu, Hu Chengyi, Liu Kunlong, et al. Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction[J]. Nano Energy, 41, 148-153(2017).

    [102] Jiao Feng, Li Jinjing, Pan Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 351, 1065-1068(2016).

    [103] Cheng Kang, Zhou Wei, Kang Jincan, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 3, 334-347(2017).

    [104] Akri M, Zhao Shu, Li Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 10, 5181(2019).

    [105] Li Xiaodong, Liang Liang, Sun Yongfu, et al. Ultrathin conductor enabling efficient IR light CO2 reduction[J]. Journal of the American Chemical Society, 141, 423-430(2019).

    [106] Li Xiaodong, Sun Yongfu, Xu Jiaqi, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers[J]. Nature Energy, 4, 690-699(2019).

    [107] Walker J E. ATP synthesis by rotary catalysis (Nobel lecture)[J]. Angewandte Chemie International Edition, 37, 2308-2319(1998).

    [108] MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture)[J]. Angewandte Chemie International Edition, 43, 4265-4277(2004).

    [109] Kornberg R. The molecular basis of eukaryotic transcription (Nobel lecture)[J]. Angewandte Chemie International Edition, 46, 6956-6965(2007).

    [110] Yonath A. Hibernating bears, antibiotics, and the evolving ribosome (Nobel lecture)[J]. Angewandte Chemie International Edition, 49, 4340-4354(2010).

    [111] Kobilka B. The structural basis of G-protein-coupled receptor signaling (Nobel lecture)[J]. Angewandte Chemie International Edition, 52, 6380-6388(2013).

    [112] Wang Liming, Zhang Tianlu, Li Panyun, et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity[J]. Acs Nano, 9, 6532-6547(2015).

    [113] Martins A C, Morcillo P, Ijomone O M, et al. New insights on the role of manganese in Alzheimer's disease and Parkinson's disease[J]. International Journal of Environmental Research and Public Health, 16, 3546(2019).

    [114] Dang Zheng, Guan Yong, Wu Zhao, et al. Regulating the synthesis rate and yield of bio-assembled FeS nanoparticles for efficient cancer therapy[J]. Nanoscale, 13, 18977-18986(2021).

    [115] Coburn D S, Nazaretski E, Xu Weihe, et al. Design, characterization, and performance of a hard X-ray transmission microscope at the National Synchrotron Light Source II 18-ID beamline[J]. Review of Scientific Instruments, 90, 053701(2019).

    [116] Tang M T, Song Y F, Yin G C, et al. Hard X-ray microscopy with sub 30 nm spatial resolution[J]. AIP Conference Proceedings, 879, 1274-1277(2007).

    [117] Chao Weilun, Fischer P, Tyliszczak T, et al. Real space soft X-ray imaging at 10 nm spatial resolution[J]. Optics Express, 20, 9777-9783(2012).

    [118] Miao Jianwei, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [119] Huang Rujin, Zhang Yanlin, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 514, 218-222(2014).

    [120] Yao Lei, Garmash O, Bianchi F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 361, 278-281(2018).

    [121] Johansson K O, Head-Gordon M P, Schrader P E, et al. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth[J]. Science, 361, 997-1000(2018).

    [122] Taatjes C A, Welz O, Eskola A J, et al. Direct measurements of conformer-dependent reactivity of the criegee intermediate CH3CHOO[J]. Science, 340, 177-180(2013).

    [123] Liu Yihe, Jiang Hong. Research progress of new materials for 5G communication[J]. Advanced Materials Industry, 51-53(2019).

    [124] Manaila-Maximean D. Effective permittivity of a multi-phase system: nanoparticle-doped polymer-dispersed liquid crystal films[J]. Molecules, 26, 1441(2021).

    [125] Shi Wenzhao, Liu Jinshu, Xing Jianwei, . Research progress on polyvinyl alcohol-based phase change composites[J]. Materials China, 39, 234-242(2020).

    [126] Hong G, Gan Xuemin, Leonhardt C, et al. A brief history of OLEDs-emitter development and industry milestones[J]. Advanced Materials, 33, 2005630(2021).

    [127] Senses E, Ansar S M, Kitchens C L, et al. Small particle driven chain disentanglements in polymer nanocomposites[J]. Physical Review Letters, 118, 147801(2017).

    [128] Wang Maoyu, Árnadóttir L, Xu Z J, et al. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts[J]. Nano-Micro Letters, 11, 47(2019).

    [129] Liu Tao, Ji Jun, Wei Haiqiao, . Progress and key scientific issues on advanced engine combustion research—summary of the 92nd Shuangqing forum of NFSC[J]. Bulletin of National Natural Science Foundation of China, 28, 20-25(2014).

    [130] Dryer F L. Chemical kinetic and combustion characteristics of transportation fuels[J]. Proceedings of the Combustion Institute, 35, 117-144(2015).

    [131] Qi Fei. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 34, 33-63(2013).

    [132] Johansson K O, Dillstrom T, Monti M, et al. Formation and emission of large furans and oxygenated hydrocarbons from flames[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 8374-8379(2016).

    [133] Battin-Leclerc F, Herbinet O, Glaude P A, et al. Experimental confirmation of the low-temperature oxidation scheme of alkanes[J]. Angewandte Chemie International Edition, 49, 3169-3172(2010).

    [134] Yang Bin, Oßwald P, Li Yuyang, et al. Identification of combustion intermediates in isomeric fuel-rich premixed butanol–oxygen flames at low pressure[J]. Combustion and Flame, 148, 198-209(2007).

    [135] Taatjes C A, Hansen N, McIlroy A, et al. Enols are common intermediates in hydrocarbon oxidation[J]. Science, 308, 1887-1889(2005).

    [136] Qi F, Li Y Y, et al. The second prize in National Natural Science Awards. 2018.

    Wangsheng Chu, Guobin Zhang, Zhe Sun, Zhenlin Luo, Ningdong Huang, Shancai Zhang, Guangyao Feng, Xiaosong Liu. Brief introduction of low-energy diffraction limited storage-ring-based synchrotron radiation and its applications[J]. High Power Laser and Particle Beams, 2022, 34(10): 104006
    Download Citation