• Chinese Journal of Lasers
  • Vol. 46, Issue 9, 901002 (2019)
Hu Shu1, Gai Baodong1, Li Chen2, Lou Mingqi3..., Liu Dong1 and Guo Jingwei1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,Dalian, Liaoning 116023, China
  • 2Bureau of Major R & D Programs, Chinese Academy of Sciences, Beijing 100864, China
  • 3School of Physics, Dalian University of Technology, Dalian, Liaoning 116023, China
  • show less
    DOI: 10.3788/CJL201946.0901002 Cite this Article Set citation alerts
    Hu Shu, Gai Baodong, Li Chen, Lou Mingqi, Liu Dong, Guo Jingwei. Time-Resolved Characteristics of Atomic Emission Spectrum in Sodium-Argon Mixture after Ionization[J]. Chinese Journal of Lasers, 2019, 46(9): 901002 Copy Citation Text show less
    References

    [1] Krupke W F. Diode pumped alkali lasers (DPALs)[J]. Progress in Quantum Electronics, 36, 4-28(2012).

    [2] Xu C, Tan R Q, Li Z Y et al. 2.8 W linearly polarized output of rubidium vapor laser with diode pumping[J]. Chinese Journal of Lasers, 40, 0102009(2013).

    [3] Yang J, Wang H K, Zhu Y et al. Output characteristics of multistage alkali vapor laser amplifiers[J]. Acta Optica Sinica, 37, 0914003(2017).

    [4] Chen F, Gao F, Xu Y et al. Diode-pumped cesium vapor laser with high efficiency output[J]. Chinese Journal of Lasers, 42, 0102011(2015).

    [5] Han G C, Li Z Y, Tan R Q et al. Output properties of self-heated alkali laser with mini vapor cell[J]. Chinese Journal of Lasers, 44, 0601002(2017).

    [6] Zhdanov B V, Rotondaro M D, Shaffer M K et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system[J]. Optics Communications, 354, 256-258(2015). http://www.sciencedirect.com/science/article/pii/S0030401815005180

    [7] Waichman K, Barmashenko B D, Rosenwaks S. Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results[J]. Journal of the Optical Society of America B, 31, 2628-2637(2014). http://www.opticsinfobase.org/abstract.cfm?uri=josab-31-11-2628

    [8] Zhao X F, Yang Z N, Hua W H et al. Ionization degree measurement in the gain medium of a hydrocarbon-free rubidium vapor laser operating in pulsed and CW modes[J]. Optics Express, 25, 9458-9470(2017). http://www.ncbi.nlm.nih.gov/pubmed/28437908

    [9] Readle J D. Atomatic alkali lasers pumped by the dissociation of photoexcited alkali-rare gas collision pairs Urbana-Champaign: University of[D]. Illinois, 3-6(2010).

    [10] Knize R J, Zhdanov B V, Shaffer M K. Photoionization in alkali lasers[J]. Optics Express, 19, 7894-7902(2011).

    [11] Xu X Q, Shen B L, Huang J H et al. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow[J]. Journal of Applied Physics, 122, 023304(2017). http://adsabs.harvard.edu/abs/2017JAP...122b3304X

    [12] Markosyan A H. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers[J]. Optics Express, 26, 488-495(2018). http://www.ncbi.nlm.nih.gov/pubmed/29328325

    [13] Chung H K, Shurgalin M, Babb J. Absorption spectra of broadened sodium resonance lines in presence of rare gases[C]. AIP Conference Proceedings, 645, 211-217(2002).

    [14] Aho K, Lindblom P, Olsson T et al. Pressure-dependent decay of the configuration in argon excited by alpha-particles and protons[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 31, 4191-4203(1998). http://adsabs.harvard.edu/abs/1998JPhB...31.4191A

    [15] Inoue G, Setser D W, Sadeghi N. Radiative lifetimes and collisional energy transfer rate constants in Ar of the Ar(3p 55p) and Ar(3p 55p') states [J]. The Journal of Chemical Physics, 76, 977-983(1982). http://scitation.aip.org/content/aip/journal/jcp/76/2/10.1063/1.443068

    [16] Lilly R A. Transition probabilities in the spectra of NeI, ArI, and KrI[J]. Journal of the Optical Society of America, 66, 245-249(1976). http://www.opticsinfobase.org/josa/abstract.cfm?uri=josa-66-3-245

    [17] Shaikh N M, Rashid B, Hafeez S et al. Measurement of electron density and temperature of a laser-induced zinc plasma[J]. Journal of Physics D: Applied Physics, 39, 1384-1391(2006).

    [18] Griem H[M]. Spectral line broadening by plasmas, 350(1974).

    [19] Aragón C, Aguilera J A. Characterization of laser induced plasmas by optical emission spectroscopy: areview of experiments and methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 893-916(2008). http://www.sciencedirect.com/science/article/pii/S0584854708001596

    [20] Guy M, Guild E, Young J et al. Pressure induced hyperfine shift and broadening rates of the 5 2S1/2-6 2P1/2 and 5 2S1/2-6 2P3/2 transitions of rubidium with He, Ar, CH4, and C2H6[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 169, 14-22(2016). http://adsabs.harvard.edu/abs/2016JQSRT.169...14G

    [21] Allard N, Kielkopf J. The effect of neutral nonresonantcollisions on atomic spectral lines[J]. Reviews of Modern Physics, 54, 1103-1182(1982).

    [22] Demtroder W. Laser spectroscopy:vol.1: basic principles[M]. 4th ed. Berlin, Heidelberg: Springer, 79(2008).

    [23] Hu S, Gai B D, Guo J W et al. Population inversion in sodium D2 transition based on sodium-ethane excimer pairs[J]. Chinese Optics Letters, 15, 111401(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170831000102SoUrXu

    [24] Hu S, Gai B D, Xia X S et al. Experimental study of sodium D2 line fluorescence lifetime of sodium-ethane excimer pairs[J]. Chinese Journal of Lasers, 44, 0901003(2017).

    [25] Hewitt J D, Eden J G. Lasing on the D lines of sodium pumped by free→free transitions of Na-Xe collision pairs[J]. Applied Physics Letters, 101, 241109(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6379329

    Hu Shu, Gai Baodong, Li Chen, Lou Mingqi, Liu Dong, Guo Jingwei. Time-Resolved Characteristics of Atomic Emission Spectrum in Sodium-Argon Mixture after Ionization[J]. Chinese Journal of Lasers, 2019, 46(9): 901002
    Download Citation