• Photonics Research
  • Vol. 12, Issue 6, 1362 (2024)
Wei Du1,†, Jingsheng Huang1,†, Yang Wang2, Maozhong Zhao1..., Juan Li1, Juntao He1, Jindong Wang1,*, Wenfu Zhang2,3 and Tao Zhu1,4|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & System (Ministry of Education), Chongqing University, Chongqing 400044, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 3e-mail: wfuzhang@opt.ac.cn
  • 4e-mail: zhutao@cqu.edu.cn
  • show less
    DOI: 10.1364/PRJ.523314 Cite this Article Set citation alerts
    Wei Du, Jingsheng Huang, Yang Wang, Maozhong Zhao, Juan Li, Juntao He, Jindong Wang, Wenfu Zhang, Tao Zhu, "Spectral-interferometry-based diff-iteration for high-precision micro-dispersion measurement," Photonics Res. 12, 1362 (2024) Copy Citation Text show less
    References

    [1] Y. Hu, Y. Jiang, Y. Zhang. Asymptotic dispersion engineering for ultra-broadband meta-optics. Nat. Commun., 14, 6649(2023).

    [2] P. Del’Haye, O. Arcizet, M. Gorodetsky. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photonics, 3, 529-533(2009).

    [3] F. Azendorf, A. Dochhan, M. H. Eiselt. Accurate single-ended measurement of propagation delay in fiber using correlation optical time domain reflectometry. J. Lightwave Technol., 39, 5744-5752(2021).

    [4] O. Terra. Chromatic dispersion measurement in optical fibers using optoelectronic oscillations. Opt. Laser Technol., 115, 292-297(2019).

    [5] R. Hui, C. Laperle, M. O’Sullivan. Measurement of total and longitudinal nonlinear phase shift as well as longitudinal dispersion for a fiber-optic link using a digital coherent transceiver. J. Lightwave Technol., 40, 7020-7029(2022).

    [6] Y. Li, Y. Huang, Y. Wu. Design of orthogonal tunable spatial heterodyne spectrometer based on prism dispersion. Opt. Laser Eng., 162, 107390(2023).

    [7] Y. Chen, Z. Fan, D. Zhang. Planar photonic chips with tailored dispersion relations for high-efficiency spectrographic detection. ACS Photon., 10, 1608-1617(2023).

    [8] J. Chen, X. Li, Q. Chu. An ultrahigh-resolution spectrometer using parallel double gratings. Results Phys., 45, 106258(2023).

    [9] A. Ohad, K. Akulov, E. Granot. Spatially resolved measurement of plasmon dispersion using Fourier-plane spectral imaging. Photon. Res., 6, 653-658(2018).

    [10] J. Cho, X. Chen, G. Raybon. Shaping lightwaves in time and frequency for optical fiber communication. Nat. Commun., 13, 785(2022).

    [11] S. Y. Lee, V. J. Parot, B. E. Bouma. Efficient dispersion modeling in optical multimode fiber. Light Sci. Appl., 12, 31(2023).

    [12] E. Ordouie, T. Jiang, T. Zhou. Differential phase-diversity electrooptic modulator for cancellation of fiber dispersion and laser noise. Nat. Commun., 14, 6065(2023).

    [13] X. Xue, P. Grelu, B. Yang. Dispersion-less Kerr solitons in spectrally confined optical cavities. Light Sci. Appl., 12, 19(2023).

    [14] J.-T. Li, B. Chang, J.-T. Du. Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Sci. Adv., 10, eadf8666(2024).

    [15] B. Xu, W. Lv, J. Ye. Spurious-free dynamic range improvement in a photonic time-stretched analog-to-digital converter based on third-order predistortion. Photon. Res., 2, 97-101(2014).

    [16] C. Lei, B. Guo, Z. Cheng. Optical time-stretch imaging: principles and applications. Appl. Phys. Rev., 3, 011102(2016).

    [17] J. Huang, Y. Cao, J. Wang. Time-stretch-based multidimensional line-scan microscopy. Opt. Laser Eng., 160, 107197(2023).

    [18] Y. Na, H. Kwak, C. Ahn. Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging. Light Sci. Appl., 12, 44(2023).

    [19] J. Wang, Z. Lu, W. Wang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).

    [20] J. Wang, X. Qu, F. Zhang. Review of dispersive interferometry ranging with optical frequency comb and the instrumentation prospect. Proc. SPIE, 11437, 114370A(2020).

    [21] J.-W. Chen, J.-D. Wang, X.-H. Qu. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and an improved data processing method. Acta Phys. Sin., 68, 190602(2019).

    [22] S. Bak, G. H. Kim, H. Jang. Optical Vernier sampling using a dual-comb-swept laser to solve distance aliasing. Photon. Res., 9, 657-667(2021).

    [23] K. Midorikawa. Ultrafast dynamic imaging. Nat. Photonics, 5, 640-641(2011).

    [24] D. Xu, A. Mandal, J. M. Baxter. Ultrafast imaging of polariton propagation and interactions. Nat. Commun., 14, 3881(2023).

    [25] B. Guo, J. Sun, Y. Lu. Ultrafast dynamics observation during femtosecond laser-material interaction. Int. J. Extrem. Manuf., 1, 032004(2019).

    [26] L. Tang, H. Jia, S. Shao. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity. Photon. Res., 9, 1948-1957(2021).

    [27] M. Li, C. Wang, W. Li. An unbalanced temporal pulse-shaping system for chirped microwave waveform generation. IEEE Trans. Microw. Theory Techn., 58, 2968-2975(2010).

    [28] L. R. Chen. Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics. Opt. Commun., 373, 70-81(2016).

    [29] X. Dong, W. Liu, Y. Wang. Dispersion limitation to the waveform synthesis of frequency-to-time-mapping technique. Optik, 187, 34-38(2019).

    [30] T. Tan, Z. Yuan, H. Zhang. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun., 12, 6716(2021).

    [31] H. Zhang, T. Tan, H. Chen. Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Phys. Rev. Lett., 130, 153802(2023).

    [32] C. Qin, J. Du, T. Tan. Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photon. Rev., 17, 2200662(2023).

    [33] Y. Wang, W. Wang, Z. Lu. Hyperbolic resonant radiation of concomitant microcombs induced by cross-phase modulation. Photon. Res., 11, 1075-1084(2023).

    [34] Y. Chen, D. Hahner, M. Trubetskov. Suppression of group delay dispersion oscillations of highly dispersive mirrors by non-uniformity and post-deposition treatment. Opt. Laser Technol., 142, 107192(2021).

    [35] H. Li, X. Tan, Q. Jiao. Design and study of a reflector-separated light dispersion-compensated 3D microscopy system. Sensors, 23, 4516(2023).

    [36] C. Wang, S. Li, Y. Liu. Hybrid grating–prism dispersion eraser. Opt. Commun., 411, 88-92(2018).

    [37] N. Jha, P. Deb. Temporal contrast improvement in chirped pulse amplification systems by a four-grating compressor and by spectral modifications. Optik, 125, 2261-2266(2014).

    [38] W. Yuan, C. Li, W. Shen. Robust unbalanced gires-tournois mirror for group delay dispersion measurement evaluation by white light interferometer. Opt. Laser Technol., 157, 108654(2023).

    [39] R. Arash, C. Chen, E. Y. Zhu. Dispersion measurement assisted by a stimulated parametric process. Opt. Lett., 45, 2034-2037(2020).

    [40] F. Kaiser, P. Vergyris, D. Aktas. Quantum enhancement of accuracy and precision in optical interferometry. Light Sci. Appl., 7, 17163(2018).

    [41] J. Hult, R. S. Watt, C. F. Kaminski. Dispersion measurement in optical fibers using supercontinuum pulses. J. Lightwave Technol., 25, 820-824(2007).

    [42] K. Zolnacz, J. Olszewski, T. Martynkien. Effective method for determining chromatic dispersion from a spectral interferogram. J. Lightwave Technol., 37, 1056-1062(2019).

    [43] H. Luk, L. Chen. Measurement method of the relative propagation delay of two signals based on modified caliper ruler. Opt. Lett, 38, 4659-4662(2013).

    [44] S. Moon, D. Y. Kim. Reflectometric fiber dispersion measurement using a supercontinuum pulse source. IEEE Photon. Technol. Lett., 21, 1262-1264(2009).

    [45] W. Du, J. Huang, J. Li. Fast and wideband optical fiber dispersion measurement using the pulse delay method based on super-continuum laser. J. Lightwave Technol., 42, 2965-2970(2024).

    [46] S. Zhang, X. Zou, H. Wang. Fiber chromatic dispersion measurement with improved measurement range based on chirped intensity modulation. Photon. Res., 2, B26-B30(2014).

    [47] T. Ito, O. Slezak, M. Yoshita. High-precision group-delay dispersion measurements of optical fibers via fingerprint-spectral wavelength-to-time mapping. Photon. Res., 4, 13-16(2016).

    Wei Du, Jingsheng Huang, Yang Wang, Maozhong Zhao, Juan Li, Juntao He, Jindong Wang, Wenfu Zhang, Tao Zhu, "Spectral-interferometry-based diff-iteration for high-precision micro-dispersion measurement," Photonics Res. 12, 1362 (2024)
    Download Citation