• Photonics Research
  • Vol. 12, Issue 6, 1175 (2024)
Alwaleed Aldhafeeri1,*, Hsiao-Hsuan Chin1, Tristan Melton1, Dong IL Lee1..., Allen Chu1, Wenting Wang1, Mingbin Yu2,3, Patrick Guo-Qiang Lo2, Dim-Lee Kwong2 and Chee Wei Wong1,4|Show fewer author(s)
Author Affiliations
  • 1Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
  • 2Institute of Microelectronics, A*STAR, Singapore 117865, Singapore
  • 3State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, and Shanghai Industrial Technology Research Institute, Shanghai 200050, China
  • 4e-mail: cheewei.wong@ucla.edu
  • show less
    DOI: 10.1364/PRJ.521282 Cite this Article Set citation alerts
    Alwaleed Aldhafeeri, Hsiao-Hsuan Chin, Tristan Melton, Dong IL Lee, Allen Chu, Wenting Wang, Mingbin Yu, Patrick Guo-Qiang Lo, Dim-Lee Kwong, Chee Wei Wong, "Low phase noise K-band signal generation using polarization diverse single-soliton integrated microcombs," Photonics Res. 12, 1175 (2024) Copy Citation Text show less
    References

    [1] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [2] H. Liu, W. Wang, J. Yang. Observation of deterministic double dissipative-Kerr-soliton generation with avoided mode crossing. Phys. Rev. Res., 5, 013172(2023).

    [3] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [4] Y. Sun, J. Wu, M. Tan. Applications of optical microcombs. Adv. Opt. Photon., 15, 86(2023).

    [5] J. Li, H. Lee, T. Chen. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett., 109, 233901(2012).

    [6] T. E. Drake, T. C. Briles, J. R. Stone. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X, 9, 031023(2019).

    [7] S.-W. Huang, J. Yang, M. Yu. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty. Sci. Adv., 2, e1501489(2016).

    [8] J. Yang, S.-W. Huang, Z. Xie. Coherent satellites in multispectral regenerative frequency microcombs. Commun. Phys., 3, 27(2020).

    [9] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [10] X. Xie, R. Bouchand, D. Nicolodi. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photonics, 11, 44-47(2017).

    [11] E. C. Vargas, K. Şžafak, A. Dai. Low noise photonic microwave oscillator based on a novel repetition rate stabilization. Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 1-2(2023).

    [12] N. V. Nardelli, H. Leopardi, T. R. Schibli. Optical and microwave metrology at the 10−18 level with an Er/Yb:glass frequency comb. Laser Photon. Rev., 17, 2200650(2023).

    [13] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [14] S.-W. Huang, H. Zhou, J. Yang. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [15] T. J. Kippenberg, A. L. Gaeta, M. Lipson. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [16] H. Guo, M. Karpov, E. Lucas. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [17] Y. Li, S.-W. Huang, B. Li. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 52(2020).

    [18] H. Zhou, Y. Geng, W. Cui. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [19] B. Yao, S.-W. Huang, Y. Liu. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).

    [20] D. T. Spencer, T. Drake, T. C. Briles. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [21] W. Liang, D. Eliyahu, V. S. Ilchenko. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [22] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [23] Y. Geng, H. Zhou, X. Han. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun., 13, 1070(2022).

    [24] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [25] Y.-S. Jang, H. Liu, J. Yang. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [26] M.-G. Suh, X. Yi, Y.-H. Lai. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019).

    [27] P. J. Marchand, J. Riemensberger, J. C. Skehan. Soliton microcomb based spectral domain optical coherence tomography. Nat. Commun., 12, 427(2021).

    [28] T. M. Fortier, M. S. Kirchner, F. Quinlan. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics, 5, 425-429(2011).

    [29] S.-W. Huang, J. Yang, J. Lim. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Sci. Rep., 5, 13355(2015).

    [30] W. Weng, E. Lucas, G. Lihachev. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    [31] E. Lucas, P. Brochard, R. Bouchand. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).

    [32] Q.-F. Yang, Q.-X. Ji, L. Wu. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun., 12, 1442(2021).

    [33] X. Yi, Q.-F. Yang, K. Y. Yang. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [34] D. Jeong, D. Kwon, I. Jeon. Ultralow jitter silica microcomb. Optica, 7, 1108-1111(2020).

    [35] D. Kwon, D. Jeong, I. Jeon. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nat. Commun., 13, 381(2022).

    [36] Z. Ye, F. Lei, K. Twayana. Integrated, ultra-compact high-Q silicon nitride microresonators for low-repetition-rate soliton microcombs. Laser Photon. Rev., 16, 2100147(2022).

    [37] X. Ji, J. Liu, J. He. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys., 5, 84(2022).

    [38] W. Jin, Q.-F. Yang, L. Chang. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [39] Q.-X. Ji, W. Jin, L. Wu. Engineered zero-dispersion microcombs using CMOS-ready photonics. Optica, 10, 279-285(2023).

    [40] Y. He, R. Lopez-Rios, U. A. Javid. High-speed tunable microwave-rate soliton microcomb. Nat. Commun., 14, 3467(2023).

    [41] X. Yi, Q.-F. Yang, X. Zhang. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [42] F. Lei, Z. Ye, O. B. Helgason. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022).

    [43] A. B. Matsko, L. Maleki. On timing jitter of mode locked Kerr frequency combs. Opt. Express, 21, 28862-28876(2013).

    [44] G. Huang, E. Lucas, J. Liu. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A, 99, 061801(2019).

    [45] A. Aldhafeeri, T. Yerebakan, Y.-S. Jang. Frequency noise metrology of SiN microresonators with Qs of 100 million at the thermodynamical bounds. Conference on Lasers and Electro-Optics (CLEO), SW4L.2(2023).

    [46] M. Karpov, H. Guo, A. Kordts. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 116, 103902(2016).

    [47] X. Yi, Q.-F. Yang, K. Y. Yang. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett., 41, 3419-3422(2016).

    [48] F. Lei, Z. Ye, V. Torres-Company. Thermal noise reduction in soliton microcombs via laser self-cooling. Opt. Lett., 47, 513(2022).

    [49] H. Weng, A. A. Afridi, J. Li. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photon., 7, 066103(2022).

    [50] J. R. Stone, T. C. Briles, T. E. Drake. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [51] W. Wang, H. Zhou, X. Jiang. Polarization-diverse soliton transitions and deterministic switching dynamics in strongly-coupled and self-stabilized microresonator frequency combs. arXiv(2023).

    [52] R. Miao, K. Yin, C. Zhou. Dual-microcomb generation via a monochromatically pumped dual-mode microresonator. Photon. Res., 12, 163-171(2024).

    [53] X. Xie, T. Sun, H. Peng. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator. Opt. Lett., 39, 785-788(2014).

    [54] R. Liu, C. Zhang, Y. Li. Low-phase-noise microwave generation with a free-running dual-pumped Si3N4 soliton microcomb. Opt. Lett., 49, 754-757(2024).

    [55] E. Lucas, H. Guo, J. D. Jost. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A, 95, 043822(2017).

    [56] H. Guo, E. Lucas, M. H. Pfeiffer. Intermode breather solitons in optical microresonators. Phys. Rev. X, 7, 041055(2017).

    [57] J. Millo, M. Abgrall, M. Lours. Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett., 94, 141105(2009).

    [58] A. Haboucha, W. Zhang, T. Li. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett., 36, 3654-3656(2011).

    [59] W. C. Swann, E. Baumann, F. R. Giorgetta. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator. Opt. Express, 19, 24387-24395(2011).

    [60] T. Tetsumoto, T. Nagatsuma, M. E. Fermann. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photonics, 15, 516-522(2021).

    [61] Y. Levin. Fluctuation-dissipation theorem for thermo-refractive noise. Phys. Lett. A, 372, 1941-1944(2008).

    [62] N. Kondratiev, M. Gorodetsky. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A, 382, 2265-2268(2018).

    Alwaleed Aldhafeeri, Hsiao-Hsuan Chin, Tristan Melton, Dong IL Lee, Allen Chu, Wenting Wang, Mingbin Yu, Patrick Guo-Qiang Lo, Dim-Lee Kwong, Chee Wei Wong, "Low phase noise K-band signal generation using polarization diverse single-soliton integrated microcombs," Photonics Res. 12, 1175 (2024)
    Download Citation