Lü Zunren, Zhang Zhongkai, Wang Hong, Ding Yunyun, Yang Xiaoguang, Meng Lei, Chai Hongyu, Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701016

Search by keywords or author
- Chinese Journal of Lasers
- Vol. 47, Issue 7, 701016 (2020)
![Schematic of different materials and corresponding density of states[10]. (a) Bulk material; (b) quantum well; (c) quantum wires; (d) quantum dots](/Images/highlights-null.jpg)
Fig. 1. Schematic of different materials and corresponding density of states[10]. (a) Bulk material; (b) quantum well; (c) quantum wires; (d) quantum dots
![Schematic of etching process for preparing quantum dot structure[11]. (a) Lower quantum well structure; (b) lithography and etching along the direction ; (c) HCl solution etching; (d) lithography and etching along the direction 1ˉ</mover](/Images/highlights-null.jpg)
Fig. 2. Schematic of etching process for preparing quantum dot structure[11]. (a) Lower quantum well structure; (b) lithography and etching along the direction <011>; (c) HCl solution etching; (d) lithography and etching along the direction <01
![Comparison of power-current curves between undoped and Si-doped quantum dot lasers[26]](/Images/icon/loading.gif)
![Schematic of discrete energy levels of quantum dots[32]](/Images/icon/loading.gif)
![Eye map of variable-temperature large signal at 10 Gbit/s direct modulation rate[51].(a) 25 ℃; (b) 50 ℃; (c) 75 ℃; (d) 85 ℃](/Images/icon/loading.gif)
![Structure diagram of quantum dot laser prepared by V-groove method[95]](/Images/icon/loading.gif)
![Cross-section bright-field transmission electron microscopy image of growth buffer layer structure of GaAs/Si(001) substrate[99]](/Images/icon/loading.gif)
![Relationship between dislocation density and distance of III-V/Si heterointerface[99]](/Images/icon/loading.gif)

Fig. 3. Schematic of SK growth mode
![Comparison of power-current curves between undoped and Si-doped quantum dot lasers[26]](/Images/icon/loading.gif)
Fig. 4. Comparison of power-current curves between undoped and Si-doped quantum dot lasers[26]
![Schematic of discrete energy levels of quantum dots[32]](/Images/icon/loading.gif)
Fig. 5. Schematic of discrete energy levels of quantum dots[32]
![Eye map of variable-temperature large signal at 10 Gbit/s direct modulation rate[51].(a) 25 ℃; (b) 50 ℃; (c) 75 ℃; (d) 85 ℃](/Images/icon/loading.gif)
Fig. 6. Eye map of variable-temperature large signal at 10 Gbit/s direct modulation rate[51].(a) 25 ℃; (b) 50 ℃; (c) 75 ℃; (d) 85 ℃
![Structure diagram of quantum dot laser prepared by V-groove method[95]](/Images/icon/loading.gif)
Fig. 7. Structure diagram of quantum dot laser prepared by V-groove method[95]
![Cross-section bright-field transmission electron microscopy image of growth buffer layer structure of GaAs/Si(001) substrate[99]](/Images/icon/loading.gif)
Fig. 8. Cross-section bright-field transmission electron microscopy image of growth buffer layer structure of GaAs/Si(001) substrate[99]
![Relationship between dislocation density and distance of III-V/Si heterointerface[99]](/Images/icon/loading.gif)
Fig. 9. Relationship between dislocation density and distance of III-V/Si heterointerface[99]
|
Table 1. Research progress of 1.3 μm band quantum dot laser on Si(001) substrate

Set citation alerts for the article
Please enter your email address