• High Power Laser and Particle Beams
  • Vol. 33, Issue 11, 112001 (2021)
Ziyue Lan, Kaiqiang Pan, Dong Yang, Zhichao Li, Tao Gong, Sanwei Li, Xiaohua Jiang, Qi Li, Liang Guo, Jiamin Yang, and Shaoen Jiang*
Author Affiliations
  • Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202133.210104 Cite this Article
    Ziyue Lan, Kaiqiang Pan, Dong Yang, Zhichao Li, Tao Gong, Sanwei Li, Xiaohua Jiang, Qi Li, Liang Guo, Jiamin Yang, Shaoen Jiang. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33(11): 112001 Copy Citation Text show less
    References

    [1] Zhang Jun, Chang Tieqiang. Fundaments of the target physics f laser fusion[M]. Beijing: National Defense Industry Press, 2004: 4041

    [2] Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 18, 1002-1016(1975).

    [3] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [4] Hinkel D E, Callahan D A, Meezan N B, et al. Analyses of laser-plasma interactions in NIF ignition emulator designs[J]. Journal of Physics:Conference Series, 244, 022019(2010).

    [5] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [6] Baldis H S, Campbell E M, Kruer W L. Physics of laser plasmas[M]. New Yk: NthHoll, 1991.

    [8] MacGowan B J, Afeyan B B, Back C A, et al. Laser-plasma interactions in ignition-scale hohlraum plasmas[J]. Physics of Plasmas, 3, 2029-2040(1996).

    [11] Glenzer S H, Back C A, Estabrook K G, et al. Observation of two ion-acoustic waves in a two-species laser-produced plasma with Thomson scattering[J]. Physical Review Letters, 77, 1496-1499(1996).

    [12] Glenzer S H, Back C A, Suter L J, et al. Thomson scattering from inertial-confinement-fusion hohlraum plasmas[J]. Physical Review Letters, 79, 1277-1280(1997).

    [13] Glenzer S H, Roznus W, MacGowan B J, et al. Thomson scattering from high-Z laser-produced plasmas[J]. Physical Review Letters, 82, 97-100(1999).

    [15] Kline J L, Montgomery D S, Bezzerides B, et al. Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter[J]. Physical Review Letters, 94, 175003(2005).

    [16] Rousseaux C, Gremillet L, Casanova M, et al. Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic[J]. Physical Review Letters, 97, 015001(2006).

    [17] Zhang C J, Hua J F, Xu X L, et al. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe[J]. Scientific Reports, 6, 29485(2016).

    [18] Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 100, 225001(2008).

    [19] Zhang Chaojie. Probing wakefield structures in plasma based accelerats using femtosecond relativistic electron probes[D]. Beijing: Department of Engineering Physics in Tsinghua University, 2016

    [20] Ward R, Sircombe N J. Fast particle Bremsstrahlung effects in the PIC code EPOCH: enhanced diagnostics f lasersolid interaction modelling[R]. University of Warwick, 2014.

    Ziyue Lan, Kaiqiang Pan, Dong Yang, Zhichao Li, Tao Gong, Sanwei Li, Xiaohua Jiang, Qi Li, Liang Guo, Jiamin Yang, Shaoen Jiang. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33(11): 112001
    Download Citation