[2] Center for NEO Studies. Discovery Statistics. https://cneos.jpl.nasa.gov/stats
[4] V GARSHNEK, D MORRISON, F M BURKLE et al. The mitigation,management,and survivability of asteroid/comet impact with earth. Space Policy, 16, 213-222(2000).
[5] S D MILLER, W C STRAKA, A S BACHMEIER et al. Earth-viewing satellite perspectives on the chelyabinsk meteor event. Proceedings of the National Academy of Sciences, 110, 18092-18097(2013).
[6] J D O’KEEFE, T J AHRENS. Impact production of co2 by the cretaceous/tertiary extinction bolide and the resultant heating of the earth. Nature, 338, 247-249(1989).
[7] NV VASILYEV. The tunguska meteorite problem today. Planetary and Space Science, 46, 129-150(1998).
[8] I T ZOTKIN, M A TSIKULIN. Simulation of the explosion of the tungus meteorite. Soviet Physics Doklady, 11, 183-186(1966).
[9] C F CHYBA, P J THOMAS, K J ZAHNLE. The 1908 tunguska explosion:atmospheric disruption of a stony asteroid. Nature, 361, 40-44(1993).
[10] O P POPOVA, P JENNISKENS, V EMEL’YANENKO et al. Chelyabinsk air burst,damage assessment,meteorite recovery and characterization. Science, 342, 1069-1073(2013).
[11] Center for NEO Studies. NEO Earth Close Approaches. https://cneos.jpl.nasa.gov/ca
[12] Center for NEO Studies. Fireball and Bolide Data. https://cneos.jpl.nasa.gov/fireballs
[13] D V KOSCHNY, K E FAST, R KOFLER et al. About the international asteroid warning network (IAWN) and the space mission planning advisory group (SMPAG). Nature Communications, 4816, 1-3(2024).
[14] R KOFLER, G DROLSHAGEN, L DRUBE et al. International coordination on planetary defence:The work of the IAWN and the SMPAG. Acta Astronautica, 156, 409-415(2018).
[18] G H STOKES, J B EVANS, H E M VIGGH et al. Lincoln near-earth asteroid program (LINEAR). Icarus, 148, 21-28(2000).
[19] A J DRAKE, S G DJORGOVSKI, A MAHABAL et al. first results from the catalina real-time transient survey. The Astrophysical Journal, 696, 870-884(2009).
[20] D JEWITT. Project Pan-STARRS and the outer solar system. Earth Moon Planets, 92, 465-476(2003).
[21] S E LEVINE, W T DEGROFF, T A BIDA et al. Status and performance of lowell observatory's discovery channel telescope and its growing suite of instruments, 1-12(2018).
[22] H ZHAN, T J ANTHONY. Cosmology with the Large Synoptic Survey Telescope:an Overview. Reports on Progress in Physics Physical Society, 81, 1-28(2018).
[23] B LLOYD, B THOMPSON, S SCHICK. Wide-field infrared survey explorer cryogenic support system lessons learned. Proceedings of SPIE-The International Society for Optical Engineering, 7796(2010).
[24] A NUTHJ, L LOWRANCEJ, G R CARRUTHERS et al. NEOCAM:The near earth object chemical analysis mission. Earth Moon Planet, 102, 495-504(2008).
[25] D L MATHIAS, L F WHEELER, J L DOTSON et al. Probabilistic asteroid impact risk model:assessment of sub-300 m impacts. Icarus, 289, 106-119(2017).
[26] D C HYLAND, H A ALTWAIJRY, R MARGULIEUX et al. A mission template for exploration and damage mitigation of potential hazard of Near Earth Asteroids. Cosmic Research, 48, 437-442(2010).
[27] N MELAMED. Development of a handbook and an on-line tool on defending earth against potentially hazardous objects. Acta Astronautica, 90, 165-172(2013).
[28] V P VASYLYEV. Deflection of hazardous near-earth objects by high concentrated sunlight and adequate design of optical collector. Earth,Moon,and Planets, 110, 67-79(2013).
[29] A F CHENG, J ATCHISON, B KANTSIPER et al. Asteroid impact and deflection assessment mission. Acta Astronautica, 115, 262-269(2015).
[30] B W BARBEE, M STEINER et al. Conceptual design of a flight validation mission for a hypervelocity asteroid intercept vehicle. Acta Astronautica, 106, 139-159(2015).
[31] A PITZ, B KAPLINGER, G VARDAXIS et al. Conceptual design of a hypervelocity asteroid intercept vehicle (HAIV) and its flight validation mission. Acta Astronautica, 94, 42-56(2014).
[32] J D WALKER, S CHOCRON. Near-Earth object deflection using conventional explosives. International Journal of Impact Engineering, 35, 1473-1477(2008).
[33] C FOSTER, J BELLEROSE, D MAURO et al. Mission concepts and operations for asteroid mitigation involving multiple gravity tractors. Acta Astronautica, 90, 112-118(2013).
[34] M GATES, S STICH, M MCDONALD et al. The asteroid redirect mission and sustainable human exploration. Acta Astronautica, 111, 29-36(2015).
[35] M F A’HEARN, M J S BELTON, W A DELAMERE et al. Deep impact:excavating comet tempel 1. Science, 310, 258-264(2005).
[36] A S IVKIN, A F CHENG. Planetary defense with the double asteroid redirection test (DART) mission and prospects. Nature Communications, 1003, 1-3(2023).
[37] D IZZO, A BOURDOUX, R WALKER et al. Optimal trajectories for the impulsive deflection of near earth objects. Acta Astronautica, 59, 294-300(2006).
[38] A W HARRIS, M A BARUCCI, J L CANO et al. The european union funded neoshield project:a global approach to near-earth object impact threat mitigation. Acta Astronautica, 90, 80-84(2013).
[39] F FERRARI, V FRANZESE, M PUGLIATTI et al. Preliminary mission profile of hera’s milani cubesat. Advances in Space Research, 67, 2010-2029(2021).
[40] M REBELO, J P SÁNCHEZ. Optimizing launch window opportunities for ESA’s comet interceptor mission using primer vector theory. Acta Astronautica, 219, 340-352(2024).
[52] P F HAN, Q G HE, X W CHEN. Deflecting asteroid itokawa by subsurface explosion:effect of explosion position on asteroid angular velocity change. Acta Astronautica, 215, 505-522(2024).
[54] W J LIU, Q M ZHANG, R R LONG et al. Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact. Defence Technology, 32, 89-103(2024).
[55] Y F JIAO, B CHENG, H X BAOYIN. Optimal kinetic-impact geometry for asteroid deflection exploiting delta-V hodograph. Journal of Guidance,Control,and Dynamics, 46, 382-389(2023).
[67] M T LI, Y R WANG, Y L WANG et al. Enhanced kinetic impactor for deflecting large potentially hazardous asteroids via maneuvering space rocks. Scientific Reports, 10, 8506-8515(2020).
[68] Y R WANG, M T LI, Z Z GONG et al. Assembled kinetic impactor for deflecting asteroids by combining the spacecraft with the launch vehicle upper stage. Icarus, 368, 114596(2021).