• Frontiers of Optoelectronics
  • Vol. 9, Issue 1, 71 (2016)
Xiaoli ZHENG, Haining CHEN, Zhanhua WEI, Yinglong YANG, He LIN, and Shihe YANG*
Author Affiliations
  • Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1007/s12200-016-0566-7 Cite this Article
    Xiaoli ZHENG, Haining CHEN, Zhanhua WEI, Yinglong YANG, He LIN, Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite(CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Frontiers of Optoelectronics, 2016, 9(1): 71 Copy Citation Text show less
    References

    [1] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

    [2] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gr tzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591

    [3] Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501 (7467): 395–398

    [4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gr tzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319

    [5] Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar Cell. Journal of Physical Chemistry Letters, 2013, 4(15): 2423–2429

    [6] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546

    [7] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903

    [8] Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Gr tzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid w-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711

    [9] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 2015, 8(3): 995–1004

    [10] Roldán-Carmona C, Gratia P, Zimmermann I, Grancini G, Gao P, Graetzel M, Nazeeruddin M K. High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of nonstoichiometric precursors. Energy & Environmental Science, 2015, 8(12): 3550–3556

    [11] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234– 1237

    [12] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gr tzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134 (42): 17396–17399

    [13] Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science, 2013, 6(11): 3249–3253

    [14] Batmunkh M, Shearer C J, Biggs MJ, Shapter J G. Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9020–9031

    [15] Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14(10): 5561–5568

    [16] Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3: 3132

    [17] Wang J T W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J. Low-temperature processed electron collection layers of graphene/ TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14(2): 724–730

    [18] Cao J, Liu Y M, Jing X, Yin J, Li J, Xu B, Tan Y Z, Zheng N. Welldefined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. Journal of the American Chemical Society, 2015, 137(34): 10914–10917

    [19] Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M, Meng Q B. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon, 2015, 93: 861–868

    [20] Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane selfassembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793

    [21] Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie (International Edition), 2014, 53(48): 13239–13243

    [22] Yan K,Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X,Wang Z,Wang J, Xu J, Yang S. High-performance graphene-based hole conductorfree perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small, 2015, 11(19): 2269–2274

    [23] Zhou H W, Shi Y T, Wang K, Dong Q S, Bai X G, Xing Y J, Du Y, Ma T L. Low-temperature processed and carbon-based ZnO/ CH3NH3PbI3/C planar heterojunction perovskite solar cells. Journal of Physical Chemistry C, 2015, 119(9): 4600–4605

    [24] Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6 (18): 10505–10510

    [25] Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N, Mhaisalkar S G. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 2014, 8(7): 6797–6804

    [26] Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Letters, 2015, 15(4): 2402–2408

    [27] Wei Z H, Chen H N, Yan K Y, Zheng X L, Yang S H. Hysteresis-free multi-wall carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, doi: 10.1039/ C5TA07714A

    [28] Rong Y G, Liu L F, Mei A Y, Li X, Han H W. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066

    [29] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gr tzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298

    [30] Xu M, Rong Y, Ku Z, Mei A, Liu T, Zhang L, Li X, Han H. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(23): 8607–8611

    [31] Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(17): 9165–9170

    [32] Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538

    [33] Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X,Wang J N, Yang S H. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy & Environmental Science, 2014, 7(10): 3326–3333

    [34] Yang Y, Xiao J,Wei H, Zhu L, Li D, Luo Y,Wu H, Meng Q. An allcarbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830

    [35] Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. Journal of Physical Chemistry Letters, 2014, 5(18): 3241–3246

    [36] Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Applied Materials & Interfaces, 2014, 6(18): 16140–16146

    [37] Chen H N, Wei Z H, Zheng X L, Yang S H. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15: 216– 226

    [38] Zheng X L,Wei Z H, Chen H N, Bai Y, Xiao S, Zhang T, Yang S H. In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, doi: 10.1016/j.jechem.2015.10.003

    [39] Wei Z H, Zheng X L, Chen H N, Long X, Wang Z L, Yang S H. A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(32): 16430–16434

    [40] Hao F, Stoumpos C C, Liu Z, Chang R P H, Kanatzidis M G. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society, 2014, 136(46): 16411–16419

    [41] Meng D L, Sun J H, Jiang S D, Zeng Y, Li Y, Yan S K, Geng J X, Huang Y. Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT composites due to different grafting approaches. Journal of Materials Chemistry, 2012, 22(40): 21583– 21591

    [42] Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Advanced Energy Materials, 2015, 5(8): 1401943

    [43] Eklund P C, Holden J M, Jishi R A. Vibrational-modes of carbon nanotubes- spectroscopy and theory. Carbon, 1995, 33(7): 959– 972

    [44] Yang D Q, Rochette J F, Sacher E. Spectroscopic evidence for π-π interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. Journal of Physical Chemistry B, 2005, 109(10): 4481–4484

    [45] Rao A M, Eklund P C, Bandow S, Thess A, Smalley R E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388(6639): 257–259

    [46] D'Urso L, Forte G, Russo P, Caccamo C, Compagnini G, Puglisi O. Surface-enhanced raman scattering study on 1D–2D graphenebased structures. Carbon, 2011, 49(10): 3149–3157

    [47] Chen J, Liu H,WeimerWA, HallsMD,Waldeck D H,Walker G C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. Journal of the American Chemical Society, 2002, 124(31): 9034–9035

    [48] Jiang L Q, Gao L. Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties. Journal of Materials Chemistry, 2005, 15(2): 260–266

    [49] Park Y D, Lim J A, Jang Y, Hwang M, Lee H S, Lee D H, Lee H J, Baek J B, Cho K. Enhancement of the field-effect mobility of poly (3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Organic Electronics, 2008, 9(3): 317–322

    [50] Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185

    [51] Irwin M D, Buchholz B, Hains A W, Chang R P H, Marks T J. p- Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2783–2787

    [52] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I I. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491

    [53] Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson E M J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. Journal of Physical Chemistry Letters, 2013, 4(9): 1532–1536

    [54] Ebadian S, Gholamkhass B, Shambayati S, Holdcroft S, Servati P. Effects of annealing and degradation on regioregular polythiophenebased bulk heterojunction organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2010, 94(12): 2258–2264

    [55] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D,Wang J T W,Wojciechowski K, Zhang W. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515

    [56] Bilkay T, Schulze K, Egorov-Brening T, Bohn A, Janietz S. Copolythiophenes with hydrophilic and hydrophobic side chains: synthesis, characterization, and performance in organic field effect transistors. Macromolecular Chemistry and Physics, 2012, 213(18): 1970–1978

    [57] Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414 (6860): 188–190

    Xiaoli ZHENG, Haining CHEN, Zhanhua WEI, Yinglong YANG, He LIN, Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite(CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Frontiers of Optoelectronics, 2016, 9(1): 71
    Download Citation